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Isaac Newton’s theory of inertially caused pressure resistance, reinstated  
Flow separations and instability drag as the mechanisms of Newton’s theory.  
The theory’s defeat by d’Alembert’s paradox, each correct within conditions only differentiated in the 19th 
century. An amusingly convoluted history.  
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Projectiles, of course, arouse motion in fluids by going through them, and this motion arises from the 
excess of the pressure of the fluid on the front of the projectile over the pressure on the back, and cannot 
be less in infinitely fluid mediums than in air, water, and quicksilver in proportion to the density of 
matter in each. And this excess of pressure…not only arouses motion in the fluid but also acts upon the 
projectile to retard its motion…1 –Isaac  Newton, The Principia: Mathematical Principles of Natural 
Philosophy, 1999 translation from the third edition of 1726.  

…the resistance…arises from the inertia of matter…2 –Newton, The Principia.  
I do not see, I admit, how one can satisfactorily explain by theory the resistance of fluids…the theory, 
developed in all possible rigor, gives, at least in several cases, a strictly vanishing resistance; a singular 
paradox which I leave to future geometers for elucidation. –Jean le Rond d’Alembert, 1768.34  

Abstract:  
In his Principia (1687, 1713, 1726), Isaac Newton asserted his theory of inertially caused non-viscous 
(frictionless) pressure resistance (drag) within hypothetical inviscid (frictionless) fluids and as a 
component of drag within real fluids. Newton correctly asserted that drag, via pressures, makes a 
“motion” (Newton’s term for momentum) exchange between object and fluid, slowing his “projectile” 
and accelerating its wake. But critically, although eddies behind rocks and bridge pylons were 
common knowledge, and despite his experiments with sinking objects, Newton didn’t investigate flow 
disturbances and eddies behind moving objects in fluids. Had he, consistently with his “motion” 
exchange, Newton would have concluded that by Descartes’ and Huygens’ conservation of 
momentum and his three laws of “motion,” addition of linear and angular momentum to flow 
disturbances would subtract momentum from the object via pressure forces, providing the 
mechanism and proof of his non-viscous inertial pressure drag. Wake disturbances were not formally 
treated until 1842 when Sir George Gabriel Stokes asserted that while ‘steady’ flows were one 
solution to the Navier-Stokes equations, eddies might develop. Numerous scientists then studied 
unstable flows, flow separations, wake vortices, turbulence, and resulting drag, even in inviscid fluids. 
These studies should have validated Newton’s theory. Shortly after Newton’s death, two preeminent 
mathematicians, Jean le Rond d’Alembert and Leonhard Euler, using independently derived 
versions of the Bernoulli equation, correctly proved that under conditions they assumed were real – 
inviscid fluids and the assumption that flows around a bluff fore-aft symmetrical object would be 
smoothly fore-aft symmetrical – drag would be zero. Inviscid and ‘steady’ conditions would 
eventually be shown to be extremely useful simplifying fictions for engineering computations, under 
which the real wake disturbances that are the mechanisms of Newton’s theory can’t exist. But in a 
time before wake disturbances were formally studied, it appeared that Newton’s assertion of non-
viscous pressure drag had been disproved. Newton’s theory has remained dismissed, herein 
reinstated. 



 

 

2 

 

General prediction before specific mechanism: 
instability drag  
It should be called instability drag. Or Newtonian 
non-viscous inertial instability pressure drag. But 
that’s hindsight. Even though with his three laws of 
motion, experiments, and his profound physical 
intuition Newton predicted such drag, he couldn’t 
know how it worked, nor even that he didn’t know. 
Had he investigated the swirls behind objects in 
flow he would have found the mechanism proving 
his theory. He didn’t. Nor would others until the 
mid-19th century. Fluid instability remained an 
undiscovered concept. In spite of the obvious 
burblings of water around stream rocks, that most 
flows, even fictionally defined frictionless 
incompressible flows, won’t stay laminar or 
smoothly follow surfaces remained the opposite of 
17th-and-18th-century formal analysis assumptions. 
This meant Newton couldn’t know the mechanisms 
by which his theory might be shown as correct. Nor 
could the mathematicians who proved him wrong.  

Oddly, their ‘proofs,’ based on mistaken 
assumptions about real fluids, introduced the single 
most useful equation for engineering purposes in the 
history of fluid dynamics and aerodynamics. That 
history is amusingly or sadly convoluted, with too 
many opportunities lost.  

Newton’s theory of inertially caused non-viscous 
pressure drag 
Isaac Newton, in the three editions of his 
Mathematical Principles of Natural Philosophy, or, 
The Principia (1687, 1713, 1726) had asserted his 
theory of inertially caused pressure resistance (drag) 
between object and flow. He asserted that this drag 
would make fore-aft pressure differences even in 
“infinitely fluid mediums” (inviscid, or frictionless 
flows), as well as making a non-viscous component 
of drag within real fluids – fluids with the viscous 
shear frictions he also described.  
Key to his theory was his assertion that a projectile 
will be slowed by fore-aft pressure differences, 

which also “arouse motion in the fluid.” This is 
Newton’s momentum exchange between object and 
flow, present in any drag. (“Motion” and “quantity 
of motion” were Newton’s term for ‘momentum.’ 
Terms with double quotes are Newton’s.) Newton 
built his theory from Descartes’ and Huygens’ 
conservation of momentum, also expressed by his 
three laws of motion, and from his experiments with 
objects sinking in water and falling through air.  

And while it’s possible to say what ‘must be’ 
merely by conservation of momentum, momentum 
is not a force. By Newton’s first and second laws, 
the change of momentum (slowing of the projectile, 
acceleration of the wake) requires an external force. 
Newton defined the two external forces that operate 
on fluids, viscous shear “friction” and “pressure.” 
For the force instrument of his non-viscous inertial 
resistance Newton correctly invoked “pressures.”  
Yet critically for his theory’s non-survival, although 
eddies were observable behind any bridge pylon or 
stream rock, Newton never investigated the wake 
disturbances behind objects in flow or their drag 
effects. Newton focused on the fact of momentum 
exchange between moving object and wake rather 
than resultant eddy formation.  

That Newton didn’t investigate such swirls is a 
mystery, and was pivotal for fluid dynamics. Such 
wake disturbances are among multiple mechanisms 
of Newton’s non-viscous inertially caused pressure 
drag.  
In the simplest of modern analyses, formation of 
turbulence, separated flows, and vortices absorbs 
momentum and kinetic energy, which inertially 
persist until well behind an object in flow, and is 
thus unavailable for conversion to pressure recovery 
immediately behind the object. The difference 
between ambient or raised pressures ahead and 
lowered pressures behind makes Newton’s non-
viscous inertially caused pressure drag.  

However, Newton’s theory was sufficiently general 
that when in the mid-19th century its specific drag 
mechanisms (flow instabilities) finally started to get 
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discovered, they fit right in. Or would have. But by 
then it was too late. His theory was long superseded, 
ignored, or dismissed. Nobody looked for its truths 
and thus didn’t find them.  

A few ways turbulence, flow separations, and 
wake vortices, make Newtonian non-viscous 
inertial drag  
There are a few means by which turbulence, flow 
separations, cavitations, and wake vortices make 
Newtonian non-viscous inertial object-flow pressure 
drag. They show that Newton was correct to invoke 
inertia:  

• First, any momentum that goes into formation of 
wake disturbances and inertially persists is then 
unavailable to be converted into pressure recovery 
immediately behind an object in flow, making 
Newton’s unequal pressures fore and aft.  
In real low-viscosity flows like air and water, it 
takes a while for viscous shear frictions to damp the 
inertia of flow disturbances. The rotational angular 
momentum of turbulence and vortices inertially 
persists until damped by viscosity, well downstream 
in low-viscosity fluids. All but the slowest (lowest 
Reynolds number, Re) real flows over objects are 
unstable and will develop turbulence and perhaps 
other instabilities. 

In a fictional inviscid fluid there is no shear friction 
to damp formation of instabilities over objects; 
turbulence always forms, and perhaps flow 
separations and wake vortices. Without viscous 
damping, linear and rotational momentums of 
separated flows and disturbances inertially persist. 
More linear, separated flows may slow and increase 
in pressure as they collide with slower flows further 
back, but also may form vortices.  
Note that an unstable flow is like balancing a pencil 
on its point. The pencil will always fall over. 
Similarly, if a flow is unstable it will always 
develop turbulence, and perhaps flow separations 
and wake vortices.  

• Second, when flows separate from an object they 
generally have higher than ambient flow velocities. 
The curve of flows around objects centrifuges lower 
pressures to their sides. The pressure gradient from 
ambient or raised pressures ahead to centrifugally 

lowered pressures to the sides of the object 
increases local flow velocities. Separated flows 
carry this raised kinetic energy into wake rather 
than into pressure recovery.  
Note that flows separate from a surface when their 
inertia exceeds the centripetal force of ambient 
pressures.  

• Third, cavitations and partial vacuum pre-
cavitations (history later.) For our purposes, in a 
cavitation, ambient or lowered pressures behind a 
moving object are insufficient to accelerate inertial 
fluids rapidly enough to catch up with the object, or 
to neck in fluids behind the object. In a gas, a strong 
vacuum forms. In a liquid, there are multiple stages 
of cavitation: vapors leaving solution to form 
bubbles, phase change of the liquid to gas, and 
strong vacuum formation.  

The drop in pressure behind an object at lower 
speeds could be called a pre-cavitation partial 
vacuum: pressure energy is used up accelerating 
inertial fluid into the space behind the object, 
leaving a lowered pressure there.  
• Fourth, separated flows add velocity to wake 
flows immediately behind the object. In 1955, 
Alexander Lippisch showed that the boundary 
between such separated flows and the ‘dead’ wake 
region behind the object is turbulent, mixing 
momentum into the wake behind, and dragging it 
backward.5 That further lowers pressures behind the 
object.  
• Fifth, at moderate speeds, separated flows will curl 
around the low pressure behind the object, creating 
von Kármán alternating vortices. The momentum of 
the separated flows is conserved as aftward 
momentum of the vortices, which alternately rip 
free making pulses of low pressure. See Figures 1 
and 2.  

• Sixth, separated flows don’t converge to raise 
pressures behind an object. Behind streamlined 
shapes at subsonic speeds, flows remain attached 
and converge for pressure recovery aft, sometimes 
nearly to pressures ahead of the object, for low drag.  
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Figure 1: Initial flows. In this simulation, flow has 
just started around a cylinder, showing a 
displacement pattern Frederick William 
Lanchester diagrammed in 1907: slowed or 
reversed core wake flows balanced by fast outer-
wake flows.6 The vertical line shows flow if there 
were no object. Here side-to-side instability is just 
starting to form, with one vortex larger than the 
other. At moderate speeds, as flows evolve from the 
simplest pattern, side-to-side symmetry is unstable 
and will give way to alternating Kármán vortices.7 
Note that to the right where flows thicken they 
have slowed; we are looking at a raised-pressure 
wave, which adds a little to the axial forward 
pressure gradient.  

• Seventh, in real fluids, viscous shear frictions can 
raise or lower non-viscous inertially caused pressure 
drag. Though not the only cause, shear frictions 
within thin ‘boundary layers’ over surfaces may trip 
flow separation and resulting vortices. But the cause 
of flow perturbations is still flow instability rather 
than viscous shear frictions, which tend to damp and 
delay turbulence. While friction and instabilities 

have an effect on each other, they are separate 
forms of drag.  

 

Figure 2:8 Flow separation drag. Flow velocities 
increase to the sides of the object. Separated flows 
inertially maintain their velocity, momentum (mv), 
and kinetic energy as they become wake. The 
wake’s inertia forms a partial vacuum behind the 
object (blue shading), around which flows may 
alternately curl, forming vortices centripetally held 
together around their centrifuged low-pressure 
centers. The aftward momentum of the separated 
flows doesn’t disappear as it winds into a vortex, 
which thus has net downstream momentum that 
rips it free. Each ripping free reforms a partial 
vacuum behind the object, around which the 
opposite high-speed separated flow curves, 
forming a new vortex of opposite rotation. As the 
vortices peel off they form a Kármán alternating 
vortex ‘street.’ Most of the aft low pressures that 
‘pull’ back on the object and pull forward on wake 
are within a few diameters of the object. Note that 
this wake volume is inertially ‘sealed’ against 
intrusions of higher-pressure fluid. Swirls further 
back are kinetic energy dumped into wake. 
All of the above can also be stated in terms of 
kinetic energy. Kinetic energy ensconced in 
turbulence, separated flows, or vortices is 
unavailable to raise pressures aft. But energy 
analysis was not available in the 17th or 18th 
centuries, even though by 1686 Gottfried Wilhelm 
von Leibniz had formulated the precursor to energy, 
the mysteriously conserved vis viva, ‘living force,’ 
mv2. Newton contentiously stuck with the 
conservation of momentum. Thomas Young used 
the term, ‘energy,’ in 1802, but it wouldn’t enter 
common use until later in the century.  
Gustave Gaspard de Coriolis established the work 
form of energy, force x distance, in 1828 -1829. 
Coriolis derived the modern mv2/2 from redefining 

mv

mv
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vis viva as weight x height.9 William Thomson, 
Lord Kelvin, in 1849 - 1851 coined the term, 
‘kinetic energy.’ In 1852 Michael Rankine 
integrated the various forms of energy, asserting 
they were convertible and conserved.10 

Opportunities lost. 
Had Newton investigated the eddies behind objects 
in flow, he unavoidably would have realized that 
formation of eddies soaks up momentum that ‘must’ 
subtract momentum from the object, for drag: he 
made a very similar analysis explaining the 
increased drag from a sinking object’s oscillations, 
asserting that momentum that goes into the 
oscillation of a sinking object must come from the 
linear momentum of the object.11 He then would 
have shifted from his general theory to its specific 
mechanisms. Fluid dynamics would have leapt 
forward by centuries.  

The course of fluid dynamics has been as unstable 
as its flows. In the vicissitudes of history, Leonardo 
da Vinci’s scientific works were unavailable for 
nearly three centuries after his 1519 death. Had they 
remained of scientific influence, his extensive 
studies of water and sketches of turbulent eddies 
behind objects in streams might have influenced 
Newton to investigate.  

In the history of science, what is not formally 
studied might as well not exist. The unstable nature 
of flows, flow disturbance patterns, and resultant 
drag wouldn’t start to be formally studied until 1842 
and Sir George Gabriel Stokes. ‘Instabilities’ refers 
to both the unstable nature of flows and to the 
disturbance patterns that result.  

Flow instability drag only belatedly studied.   
In 1842, Sir George Gabriel Stokes showed that 
steady flow solutions to the Navier-Stokes 
equations (1821 – 1845) are not the only solutions 
and that eddies might develop.12  
Studies of wave, atmospheric, and flow instabilities 
and resultant drag by Stokes, Poncelet, Saint-
Venant, Kirchhoff, Helmholtz, Rayleigh, Taylor, 
Kelvin, and others followed, as progress with dead 
ends. Stokes initiated and abandoned an idea of 
‘deadwater wakes,’ which nevertheless persisted 
into the WWI years in British attempts to 

mathematically model wing lift and drag.13 In 1883 
Osborne Reynolds derived a ratio of inertial to 
viscous forces useful in the prediction of transition 
from laminar (smooth) to higher-drag turbulent 
flows, now known as Reynolds numbers, Re. 
Understanding of the unstable nature of flows, both 
real and idealized, was more complete. The study of 
the mechanisms of drag from flow separations and 
instabilities has continued into this century. 
Instability drag was not applied to Newton’s inertial 
drag theory.  

The defeat of Newton’s theory by d’Alembert’s 
paradox 
Within two decades of Newton’s 1727 death, Jean 
le Rond d’Alembert (French) mathematically 
proved zero drag around a fore-aft symmetrical 
bluff object under false assumptions that real fluids 
were inviscid and that flows around such objects are 
smoothly fore-aft symmetrical in pattern, velocity, 
and pressure. Equal pressures fore and aft meant 
zero drag. A proof by Leonhard Euler (Swiss) was 
flawed but used the same assumptions. Each added 
the simplifying condition of incompressibility.  

D’Alembert’s analysis  
D’Alembert’s analysis was based on his 
independent derivation of what Euler would 
formalize in 1752 as the Bernoulli equation, which 
asserts a lossless exchange of fluid pressure, 
velocity, and fluid elevation along streamlines, 
implying zero exchange between object and flow:  
p + ½ ρv2 + ρgh = constant along streamlines  

Traditional Bernoulli is in terms easily measurable 
for engineering, pressure (p), density (rho, ρ), 
velocity (v), gravity (g), and height (h).  
D’Alembert searched for the causes of drag in three 
papers, of 1744, 1752, and 1768. Since there is 
resistance, in 1768 d’Alembert declared his 
paradox.14  
And then the unexamined axioms that founded fluid 
dynamics were carried into the future.  
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Figure 3: D’Alembert’s paradox. His 1752 sketch 
implies fore-aft symmetrical patterns of flow, 
velocity, and by his independent derivation of the 
Bernoulli equation, pressure, for zero drag.15 He 
falsely assumed real fluids are frictionless. And he 
didn’t have the 19th-century concept of unstable 
flow. The modern simplifying constraint, ‘steady 
flow,’ hides inertially caused pressure forces that 
otherwise would make this flow pattern 
asymmetrical and turbulent.  

Figure 4: Centrifuging of pressures: In Euler’s 
1745 diagram (left) he incorrectly asserted zero 
velocity change from ahead to the side of the 
object, and thus no pressure change for no drag, 
apparently assuming fore-aft symmetry. But he did 
hint at centrifuging of pressures, asserting that 
pressures would only be raised between ‘a’ and 
‘m.’ He didn’t consider that this would make a 
pressure gradient along streamlines, nor did he 
consider the centrifugal lowering of pressures 
from ‘m’ to ‘d,’ strengthening that gradient and 
accelerating flows to the object’s sides. Frederick 
William Lanchester’s 1907 diagram (right) shows 
centrifuging of raised pressures ahead and aft, 
and centrifugally lowered pressures and narrowed 
streamtubes (higher velocities) to the sides.16  

Euler’s ‘proof’ of zero inviscid drag  
Euler was becoming the dominant mathematician of 
his century, so his paradox ‘proof’ would have 
carried weight. But his proof, in his 1745 
Commentary on a superb 1742 work by Benjamin 
Robins,17 can mostly be ignored.  

Euler’s ‘proof’ does contain a prequel to perhaps 
the most neglected equation in applied 
aerodynamics, the equation for the centrifuging of 
pressures, which is a simplified but more explicit 
form of his equation for forces normal to 
streamlines, from his 1752 equations of inviscid 
fluid dynamics.18  
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And Euler did diagram ‘canals’ of flow around an 
object, now called streamtubes, perhaps after a 1736 
figure by Daniel Bernoulli.19 Streamlines don’t have 
volume, so they can’t carry momentum. 
Streamtubes are the volume-momentum-energy 
form of streamlines, with infinitesimal cross-
sectional area.  

But Euler’s ‘proof?’Euler diagrammed his ‘canal’ 
streamtubes around only the fore half of an object 
and claimed their flows wouldn’t change velocity 
from well ahead to the sides of the object (very false 
except in very slow flows), implying no change in 
pressure, and thus no drag.20  

Twice ‘proven’ wrong  
Having been twice ‘proven’ wrong, Newton’s 
theory of inertial pressure resistance was ignored, 
when even considered.  
Future geometers (mathematicians) would claim 
d’Alembert’s paradox ‘resolved’ by each newly 
recognized form of drag. The viscous shear frictions 
of the Navier-Stokes equations of 1821 – 1845 were 
overemphasized. Later theorists studied flow 
separation patterns, turbulence, instabilities, without 
recognizing them as the mechanisms of Newton’s 
inertial pressure drag. It’s still common to hear the 
resolution of d’Alembert’s paradox attributed to 
shear frictions, and only rarely to unstable flows.  

The evolution of simplifying conditions from 
early false assumptions about real fluids  

Modern theorists usually write that d’Alembert and 
Euler derived their proofs and Bernoulli equations 
within ‘perfect fluid’ conditions: incompressible, 
frictionless, ‘steady’ (and ‘irrotational,’ beyond this 
paper) flows with no flow separations. But those are 
modern conditions recognized as simplifications to 
keep computations simple.  
In modern terms, the ‘steady flow’ constraint 
requires, for computational simplicity, that flows 
not be allowed to evolve from d’Alembert’s and 
Euler’s laminar attached flows into turbulence, flow 
separations from surfaces, or vortices.  

D’Alembert and Euler didn’t specify steady flows, 
as the opposite concept, unstable flows, didn’t exist. 
Their diagrams show an assumption of steady, 

laminar, attached flows that are fore-aft symmetrical 
around their fore-aft symmetrical objects. Such flow 
conditions are unstable and will devolve into the 
instabilities that provide Newton’s fore-aft pressure 
differences, for drag,21 unless fictionally prevented 
by the modern simplifying condition, ‘steady 
flows.’  

Both mathematicians knew their models didn’t 
match reality. Each recognized the paradox of 
actual fluid drag versus, as Euler put it, “their very 
great resistance.”22  

D’Alembert and Euler either hadn’t read Newton’s 
descriptions of viscous shear frictions, disbelieved 
them, considered them insignificant, or only trusted 
their own analyses. Newton’s study of fluid 
“frictions” (viscous shear frictions) and “tenacity” 
(viscosity) would mostly be ignored until re-derived 
in the Navier-Stokes equations of 1821 – 1845.  
For d’Alembert and especially Euler, the inviscid 
condition was an assumption about real fluids rather 
than a simplifying model. This is illustrated by 
Euler’s criticism of the English artillerist Benjamin 
Robins’ 1742 assertion that ball spin on an axis 
crosswise to travel caused veer (lift), which would 
require fluid viscosity. Robins had read Newton’s 
similar description of the curve of tennis balls.23 
Robins’ experimental results were decisive yet 
defeated by Euler, who asserted irregularities in 
manufacturing.24 A century later Gustav Magnus, in 
a convincing experiment with flawed explanations, 
verified Robins’ conclusions in what should be 
called ‘the Robins effect’ rather than ‘the Magnus 
effect.’  

Figure 5 (following page): Timeline of drag 
theories. Background art by Leonardo da Vinci, 
1452 -1519.252627  
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In his Commentary on Robins’ 1842 New Principles 
of Gunnery, Euler had attempted to resolve the 
paradox by a more formal treatment of: (1) Robins’ 
experimental observation that at and above 
transonic speeds, air resistance on musket balls 
nearly triples; (2) Robins’ conclusions that the jump 
in drag happens as a vacuum forms behind the ball 
(cavitation); and (3) that cavitation depends on 
projectile velocity and the pressure of the fluid.28 
Euler was unable to extend this cavitation analysis 
to partial vacuum drag behind subsonic objects.29 
The earlier inertial argument would have sufficed.  
Since the fictional ‘steady flow’ constraint 
precludes the wake perturbations that are the 
mechanisms of Newton’s non-viscous drag, under 
fictional ‘perfect fluid’ idealizations Newton’s 
approach yields d’Alembert’s zero drag. That’s a 
case of fictions in, useful fictions out. Newton’s 
theory is the more general, and yields results 
required by any parameters. For real conditions its 
predictions are real.  

Caveats: D’Alembert did consider frictions, but 
didn’t pursue the analysis as a resolution of his 
paradox. Darrigol observes that in 1749 he evoked 
velocity-proportional fluid-surface friction, and 
fluid ténacité, viscosity. And in 1744, noting the 
mathematical zero drag, “d’Alembert evoked the 
observed stagnancy of the fluid behind the body to 
retain only the Bernoulli pressure on the prow.”30 
Thus he came close to investigating the evolution of 
unstable flow patterns. And then he retreated to his 
mathematical analyses.  

The ignorance of the times  
In the 18th century, there was no theoretical way for 
d’Alembert or Euler to formally know their 
smoothly attached depictions of fore-aft 
symmetrical flows were unstable and could only 
make zero drag if fictionally not allowed to evolve 
to flow separations, eddies, turbulence, and 
asymmetry.  

Nor could Newton have known that a specific 
explanation rather than a general prediction of his 
inertial drag required the formally uninvestigated 
concept of unstable flows.  

Under only apparently similar inviscid flow 
conditions, Newton’s inertial pressure theory 
predicted drag while d’Alembert predicted zero 
drag. A mathematical proof of zero drag vs. a 
verbally described assertion of drag? Newton’s 
theory lost.  

Modern dismissiveness of Newton’s theory  
When (rarely) discussed, Newton’s inertial 
resistance is dismissed:  

. . . there is no such thing as a component of 
resistance resulting from the inertia of the fluid! 
As d’Alembert showed . . . the resistance . . . 
when moving in an incompressible, inviscid 
fluid is exactly zero.31 --George E. Smith, “Was 
Wrong Newton Bad Newton?” 2005.  

Note that Smith left out d’Alembert’s and Euler’s 
pivotal false assumption, of ‘steady,’ smoothly 
attached flows. 

Even in the definitive 1999 translation of the third 
edition of Principia from its original Latin, the 
authors of the 370-page preface only lament, “The 
loss of interest in Newton’s theoretical model of 
inertial resistance . . .” because it meant the loss of 
interest in his timing of spheres dropped 220' from 
the newly constructed dome of St. Paul’s Cathedral 
in London, “the first accurate measures of resistance 
forces.”32  

Attempts to apply instability drag to 
d’Alembert’s paradox but not to Newton’s 
theory. 

Another way to solve d’Alembert’s paradox was to 
assume some instability of the laminar flow of a 
slightly-viscous fluid that prompted turbulent 
eddying in the rear of the body. Stokes first suggested 
this option in 1843. Poncelet and Saint-Venant made 
it the basis of quantitative resistance estimates... 
[Starting in 1846.]  
Their theories nonetheless lacked predictive power… 
–Olivier Darrigol, Worlds of Flow.33  

Figure 6 (next page): Historical stages of drag 
theory. Kármán Vortex simulation image 
permission from Tintschl BioEnergie.34 Da Vinci 
sketches.3536 Newton portrait.37 
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5: 2020: Recognition of wake disturbances as the mechanisms 
of Newton’s theory of inertially-caused pressure resistance 
allows the theory’s reinstatement. 
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Leonardo da Vinci and Isaac Newton, 
the two greats of early fluid theory, whose contributions were 
largely lost for centuries or considered disproved and ignored.

Progress and obstruction: 
1744 - 1768: D’Alembert’s paradox and Euler’s Bernoulli equation 
     derive zero drag, defeating Newton’s theory of inertial pressure 
     resistance. Their assumptions about real flows are incorrect.
1821 - 1845: NS equations re-derive Newton’s sheer frictions, ‘solving’  
     the paradox (partially), but with over-emphasis on frictions. 

1: Early: Flows impart force. Moving objects slow within fluid. 
All species experience drag. 
384 – 322 BC: Aristotle on ‘resistance.’ 

Drag effects on fluid are not formally considered, until: 

Stages of drag theory: 

1519: da Vinci’s fluid studiess, lost for centuries. 

2: 1687: Newton: Friction and pressure drag 
on object puts an opposite force on wake. 
No wake details.
  

Prescient but ignored: 
via observation, experiment, 
and his 3 laws of motion, 
Newton asserts that 
wake inertia makes 
a lower pressure behind an
object in flow than ahead,
without investigating the 
turbulence, wake instabilities, 
and flow separations 
that are its mechanisms. 

3: 1842, Stokes: 
Unstable flows!
Eddies! 
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Historically, conceptual descriptions that are 
difficult to quantitatively model seldom carried 
weight. That’s a limitation of mathematical 
modeling rather than of conceptual descriptions, 
which might have salvaged Newton’s theory.  

Newton’s motion exchange and d’Alembert’s 
paradox. Anomaly and traps.  
D’Alembert’s paradox can be restated in terms of 
Newton’s exchange: If there is no exchange of 
momentum between object and flow there is no 
drag. Ditto for kinetic energy.  
Newton’s exchange is verified by his second and 
third laws: 
FDrag = m∆vObject/sec = - m∆vFluid/sec = -FFluid  

This says, ‘The pressure and friction drag forces on 
the object equals its change in momentum/time 
which is equal and opposite to the fluid’s change of 
momentum/time which is caused by the pressure 
gradient and friction forces on the fluid. Forces on 
the object and fluid are equal and opposite.’ 

The middle terms are the ‘ma’ from Newton’s F = 
ma, with ma as the change (∆) in momentum (m∆v) 
per second.  
This repeats Newton’s third law of “motion” 
(momentum), that for every force (here drag on an 
object) there is an equal and opposite force (on the 
fluid).  

A Newtonian drag exchange term for Bernoulli  
The Bernoulli equation is recognized as simplistic. 
Several complications are usually explicitly 
ignored, mainly for engineering simplicity, or as 
having minimal impact on most calculations. These 
include losses to entropy (including flow 
disturbances), enthalpy (heat loss), and work, a 
form of energy. This ‘work’ is usually ignored, but 
shouldn’t be: it is precisely a Newtonian exchange 
of energy between object and flow, for Newtonian 
inertially caused pressure drag.  
Adding a Newton object-flow drag exchange term 
to the Bernoulli equation allows non-constant 
energy along streamtubes, immersed bow and stern 
waves with local energy concentrations, includes 

the possibility of Newtonian inertial drag, and has 
wind tunnel implications. 
(pAd + ½mv2 + mgh) flow field – (½mv2 + mgh)object – 
etc. = constant  
This says that drag can suck kinetic energy out of 
the object, which slows, and adds kinetic energy to 
wake flows. (Or vice versa.) Energy is thus not 
constant along streamtubes if there is inviscid drag, 
or any drag.  

To get more complete we could add a thrust energy 
term. Then for an object maintained at constant 
velocity, energy added by thrust would end up in 
the flow field as wake disturbance.  

Figure 7: Local concentration of energy and the 
Bernoulli anomaly. A wing moving to the left 
approaches a still parcel of air (left blue circle). As 
a wing passes over the previously undisturbed 
parcel, the raised pressure below its forward 
stagnation point pushes it forward while its 
pressure is increased. Its kinetic and pressure 
energies increase simultaneously, a local total 
energy concentration, for non-constant energy 
along streamlines, opposite of what the simplistic 
Bernoulli equation predicts.  

The Bernoulli anomaly perspective trap  

The simple Bernoulli equation shows constant 
energy along streamlines (more accurately, along 
streamtubes) around an object in flow. That’s true 
under perfect fluid conditions, but in real flows, 
Newton’s drag momentum/energy exchange 
requires local concentrations of total energy along 
streamtubes. Object kinetic energy lost to drag adds 
to local concentrations of kinetic plus pressure 
energies along streamtubes.  
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 Newton D’Alembert Euler Conclusions:  

Basis 3 laws of motion, 
experiment, observation 

Bernoulli & 
incomplete 
mathematical model 

Bernoulli and partly 
false conceptual 
model 

 

17th-18th-century 
correct conditions  

Viscous vs. inviscid 
fluids. Flow asymmetry 
implied by drag ‘motion’ 
exchange 

X X N’s hypothetical 
inviscid fluid with  
unknown  
unstable  
flow condition… 

17th-18th-century false 
assumptions.  

 Real flows assumed 
steady, inviscid, and 
symmetrical  

Real flows  assumed 
steady, inviscid, and 
symmetrical  

seems similar to  
D & E’s false  
inviscid steady  
symmetrical flow 
assumptions. 

Simplifying conditions  Incompressible fluids  Incompressible fluids Incompressible fluids  

Unknown in the 17th-
18th-centuries  

Flow instability as the 
hidden drag mechanism  

Symmetrical flows are 
unstable 

Symmetrical flows are 
unstable 

 

17th-18th-century 
results 

Inertially caused non-
viscous pressure drag 
plus friction drag. 
Object-flow momentum 
exchange.  

Zero drag.  Zero drag.   Different  
results from  
apparently  
similar  
inviscid  
steady  
conditions 

19th-21st-century 
conditions 

Unstable flows except 
in the fictional ‘steady’ 
flow simplification 

Fictional perfect fluid 
simplification. 
Instabilities 
disallowed.   

Fictional perfect fluid 
simplification.  
Instabilities 
disallowed.   

 

19th-21st-century 
similar results in 
fictional perfect fluid 
conditions, 
(instabilities not 
allowed). 

Zero drag (when 
instabilities not 
allowed). Constant 
energy along 
streamlines.  

Zero drag.  Constant 
energy along 
streamlines. 

Zero drag. Constant 
energy along 
streamlines. 

Similar results  
under fictional 
‘perfect fluid’  
‘steady flow’  
conditions 

19th-21st-century 
results in non-perfect 
fluid and real 
conditions.!  

Inertially caused 
instability pressure 
drag. Local energy 
concentrations.  

X  
 

X Newton shows  
different results  
when instabilities  
are allowed.  
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Figure 8 (previous page): Newton’s, d’Alembert’s, 
and Euler’s period conditions and conclusions 
versus modern conditions and conclusions.  
The usual wind tunnel perspective hides an old and 
generally ignored Bernoulli anomaly around wings 
and hides the fact of local energy concentrations 
along streamlines: Below the forward stagnation 
point of a wing in lift, where upper and lower flows 
separate, there is a raised-pressure area. As a tiny 
‘parcel’ of flow that will pass under the wing 
approaches this area from ahead along a streamline, 
it slows. That’s a Bernoulli exchange of increased 
pressure for decreased velocity.  
But that’s deceptive. From the perspective of a 
moving wing disturbing previously still air, as that 
raised-pressure region approaches the previously 
still parcel of air the wing will pass over, the parcel 
is within increasing pressures that push it forward, 
though not as fast as the wing. Pressure and 
velocity are increased simultaneously, for raised 
local total energy and an ‘immersed bow pressure 
wave.’  

Similarly, total energy is raised along streamtubes 
in the raised-pressure volume just ahead of a 
moving sphere.  

Terminal velocities show Newtonian 
momentum/energy drag exchange 

Where there is drag, even in inviscid but otherwise 
real fluids, thrust is required to maintain velocity. 
Any limited thrust on an object results in limited 
displacement pressure gradients around the object 
that can only accelerate an inertial fluid out of the 
way of the object to limited velocities. At terminal 
velocities, drag equals thrust.  
At terminal velocities, thrust energy (force x 
distance) doesn’t go into increasing object kinetic 
energy, but via drag energy lost (again force x 
distance) goes into accelerating wake, validating 
Newton’s ‘motion’ exchange in ‘non-perfect’ flows.  

This doesn’t hold within ‘perfect fluid’ models. 
Within fictional inviscid, steady flow, 
incompressible conditions, ambient pressure acts as 
if infinite, cavitation can never happen, flows 
around a fore-aft symmetrical body remain fore-aft 
symmetrical, pressure gradients fore and aft can 

symmetrically raise toward infinity and still be 
balanced for zero drag, and object velocity can 
increase toward infinity. Simple Bernoulli is 
perfectly accurate. Under these idealized conditions, 
d’Alembert’s zero-drag holds. But for engineering 
purposes, the simple Bernoulli equation’s 
predictions of flows and pressures are often close 
enough to be calibrated.  

Hiding Newton’s exchange: the wind tunnel 
perspective trap  

The wind-tunnel perspective trap: In a steady-state 
diagram, or relative to an observer at a wind tunnel, 
an object or model has zero momentum. It’s still. So 
how can there be a Newtonian momentum 
exchange? And the flow is in a mean steady state, 
even with turbulence and fluctuations, so how can it 
be exchanging momentum and energy with a 
stationary model? 

Where an object is held at constant velocity by 
thrust, there are two Newtonian momentum 
exchanges: thrust adds momentum to the object, and 
drag subtracts equal momentum from the object and 
adds it to wake.  
This holds for energy exchanges also: In a wind 
tunnel, the force from the mount on the model times 
the distance it travels relative to airflow is work, 
energy. That’s by F x d = work. The opposite force, 
drag times distance relative to airflow, is also work. 
Energy thus added to the object is subtracted from it 
by drag and added to wake.  

So there is a pair of Newtonian momentum or 
energy exchanges operating in steady states. It’s 
addition and equal subtraction.  
Newton’s motion exchange is more obvious as in 
his example, where an object is free to slow.  
Summary  

The course of early fluid dynamics was as unstable 
as its flows. Three turning points were: 1: The loss 
of da Vinci’s studies of turbulent flows, affecting; 2: 
that Newton didn’t investigate the flow separations, 
wake eddies, and their effect on drag that could 
have proved his theory of inertially caused pressure 
resistance, a non-viscous, separable component of 
drag in real flows and operant in inviscid flows, 
and; 3: his theory’s defeat by d’Alembert’s and 



 

 

14 

Euler’s ‘proof’ of zero-drag. Newton showed his 
theory at a general level but didn’t find the 
turbulence, flow separation, and eddy formation that 
are its specific mechanisms. Each absorbs and 
inertially holds momentum, which then can’t 
convert into raised pressures behind an object, 
making the fore-aft pressure imbalance that Newton 
predicted. Such flow instabilities weren’t formally 
investigated until after 1842, so d’Alembert’s 1744 
proof of zero drag under inviscid conditions seemed 
similar to Newton’s inviscid conditions and 
appeared to disprove his theory. ‘Steady and 
inviscid flow conditions’ started as d’Alembert’s 
and Euler’s incorrect assumptions about real fluids 
and evolved into modern fictional conditions 
simplifying engineering approximations. ‘Steady’ 
flow is the modern fictional modeling constraint 
under which flow separations and perturbations are 
not allowed. Along with incompressibility, inviscid 
and ‘steady’ define the ‘perfect fluid’ idealization 
and the only conditions under which d’Alembert’s 
and the Bernoulli equation’s predictions of zero 
drag hold. Within d’Alembert’s equivalent of 
‘perfect’ flow conditions, the mechanisms of 
Newton’s inertial pressure drag can’t exist, so 
Newton’s theory also predicts D’Alembert’s zero 
drag. All but the slowest (lowest Reynolds number) 
real flows are unstable, and around surfaces will 
develop turbulence and perhaps flow separations 
and instabilities, for a Newtonian non-viscous 
component of drag. Without the damping effect of 
viscosity, and without the ‘steady’ flow constraint, 
all theoretical inviscid flows over objects are 
unstable and will always develop turbulence and 
perhaps other flow disturbances, for Newtonian 
inviscid drag. Newton’s theory of non-viscous 
inertially caused pressure drag is correct under all 
conditions and is reinstated.  
Newton’s ghost says, “Q.E.D.”  
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