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Projectiles, of course, arouse motion in fluids by going through them, and this motion arises from the 
excess of the pressure of the fluid on the front of the projectile over the pressure on the back, and cannot 
be less in infinitely fluid mediums than in air, water, and quicksilver in proportion to the density of 
matter in each. And this excess of pressure…not only arouses motion in the fluid but also acts upon the 
projectile to retard its motion…1 –Isaac Newton, The Principia: Mathematical Principles of Natural 
Philosophy, 1999 translation from the third edition of 1726.  
…the resistance…arises from the inertia of matter…2 –Newton, The Principia.  

I do not see, I admit, how one can satisfactorily explain by theory the resistance of fluids…the theory, 
developed in all possible rigor, gives, at least in several cases, a strictly vanishing resistance; a singular 
paradox which I leave to future geometers for elucidation. –Jean le Rond d’Alembert, 1768.34  

Abstract:  
In	
  his	
  Principia	
  (1687,	
  1713,	
  1726),	
  Isaac	
  Newton	
  asserted	
  his	
  theory	
  of	
  inertially-­‐caused	
  non-­‐
viscous	
  (frictionless)	
  pressure	
  resistance	
  (drag)	
  within	
  hypothetical	
  inviscid	
  (frictionless)	
  
fluids	
  and	
  as	
  a	
  component	
  of	
  drag	
  within	
  real	
  fluids.	
  Within	
  two	
  decades	
  of	
  Newton’s	
  1727	
  
death,	
  under	
  only	
  apparently	
  similar	
  inviscid	
  conditions,	
  Jean	
  le	
  Rond	
  d’Alembert	
  
mathematically	
  proved	
  zero	
  drag	
  around	
  fore-­‐aft	
  symmetrical	
  objects	
  in	
  flow,	
  the	
  opposite	
  of	
  
Newton’s	
  drag	
  assertion.	
  Within	
  limited	
  18th-­‐century	
  understandings	
  of	
  fluids,	
  when	
  it	
  wasn’t	
  
ignored,	
  it	
  appeared	
  that	
  Newton’s	
  theory	
  had	
  been	
  disproved.	
  But	
  each	
  theory	
  is	
  correct	
  
within	
  differing	
  conditions	
  that	
  couldn’t	
  be	
  described	
  until	
  the	
  late	
  19th	
  century.	
  That	
  analysis	
  
was	
  never	
  made.	
  The	
  archaic	
  reasoning	
  of	
  Newton’s	
  theory’s	
  disproof	
  has	
  persisted	
  to	
  the	
  
present.	
  Historically	
  it	
  became	
  a	
  conflict	
  between	
  d’Alembert’s	
  assumption	
  of	
  fore-­‐aft	
  flow	
  
symmetry	
  under	
  inviscid	
  ‘steady’	
  flow	
  conditions	
  he	
  assumed	
  were	
  real	
  but	
  were	
  later	
  shown	
  
to	
  be	
  useful	
  fictions,	
  vs.	
  Newton’s theory of inertial fore-aft pressure differences and his assertion 
that drag makes a momentum exchange between projectile and flow, slowing a projectile and adding 
“motion” to wake. Newton didn’t explicitly label these fore-aft differences of pressure and 
momentum as asymmetries. Newton focused on the fact of momentum exchange rather than what it 
does to wakes. He	
  didn’t	
  get	
  to	
  the	
  idea	
  that	
  drag-­‐added	
  momentum	
  would	
  make	
  wake	
  flows	
  
develop	
  the	
  flow	
  patterns,	
  eddies,	
  and	
  turbulence	
  that	
  in	
  turn	
  would	
  be	
  the	
  mechanisms	
  of	
  his	
  
inertial	
  pressure	
  drag.	
  Such	
  disturbances	
  soak	
  up	
  kinetic	
  energy	
  that	
  is	
  then	
  unavailable	
  to	
  be	
  
converted	
  into	
  pressure	
  recovery	
  aft,	
  making	
  Newton’s	
  unequal	
  pressures	
  fore	
  and	
  aft	
  –	
  drag.	
  
In 1842 Sir George Gabriel Stokes shifted the focus of fluid dynamics to fluid instabilities. The	
  drag	
  
effects	
  of	
  flow	
  separations,	
  instabilities,	
  and	
  turbulence	
  followed.	
  They	
  show	
  Newton’s	
  theory	
  
as	
  correct,	
  or	
  should	
  have.	
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Figure 1: Da Vinci’s sketches of turbulent wake flows, from 1501510 - 1513 in the Codex Atlanticus.5 If 
not lost for nearly three centuries, they might have led fluid dynamicists to study the drag from flow 
instabilities, and then to the unstable nature of almost all flows. Instead, the concept of unstable flows 
would wait for Sir George Gabriel Stokes derivation in 1842. The founding century of fluid dynamics, 
from the Principia in 1687 to d’Alembert’s 1868 declaration of his paradox, was thus missing the 
concept of unstable flows and resulting perturbations, the source of non-viscous drag that could have 
proved Newton’s superb theory of inertially caused pressure resistance.  

Overview. The monikers of misunderstanding.  
It should be called instability drag. Or Newtonian 
non-viscous inertial pressure instability drag. But 
that’s hindsight. Even though his three laws of 
motion and experiment predicted such drag, he 
couldn’t know how it worked. Fluid instability was 
an undiscovered concept. That most flows, even 
fictionally defined frictionless incompressible 
flows, won’t stay laminar or smoothly follow 
surfaces was the opposite of 17th and 18th century 
assumptions. And that meant he couldn’t know the 
mechanisms by which his theory was correct. Nor 
could the mathematicians who proved him wrong.  
The three main elements of Newton’s theory of 
object-flow drag are “frictions,” momentum 
exchange, and inertially caused pressure gradients. 
Newton’s theory of inertial pressure drag is 

sufficiently general that it covers all object-flow 
drag not caused by viscous shear frictions and some 
of the drag caused by frictions. With a number of 
other observations, Newton formed the most general 
theory of drag to date. It should have been the 
founding theory of modern fluid dynamics. With the 
eventual exception of his study of viscous sheer 
frictions, it was more ignored and superseded than 
attacked. It’s dismissal persists to the present.  

Sometimes a general theory can be shown even 
before its mechanisms are discovered. In this sense, 
that Newton’s 1687 theory of inertially caused 
pressure drag was missing its mechanisms 
(instabilities), parallel’s Darwin’s 1859 theory of 
natural selection, for which its mechanisms, particle 
genetics and mutation, were unknown until Hugo de 
Vries’ 1890s research and the rediscovery of 
Gregory Mendel’s seminal but obscure 1866 paper. 
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Also similarly, Mendel experimentally developed 
his general particulate theory of inheritance well 
before its mechanisms, chromosomes, genes, and 
DNA, would begin to be discovered. Experiment 
and wind tunnel and field observations often help 
build general truths before explanation. There are 
myriad examples. For these three theorists, the 
difference was that even without specific 
mechanisms, Darwin’s and (belatedly) Mendel’s 
theories survived, while Newton’s did not.  
Newton, in the three editions of his Mathematical 
Principles of Natural Philosophy, or, The Principia 
(1687, 1713, 1726) had asserted his theory of 
inertially caused pressure resistance (drag) between 
object and flow. He asserted that his drag would 
make fore-aft pressure differences even in 
“infinitely fluid mediums” (inviscid, or frictionless 
flows), as well as making a non-viscous component 
of drag within real fluids – fluids with viscous shear 
friction.  

Newton’s	
  theory	
  of	
  non-­‐viscous	
  (frictionless) 
inertial	
  pressure	
  drag	
  was	
  sufficiently	
  general	
  
that	
  when	
  in	
  the	
  mid	
  19th	
  century	
  its	
  specific	
  
drag	
  mechanisms	
  finally	
  started	
  to	
  get	
  
discovered,	
  they	
  fit	
  right	
  in.	
  Or	
  would	
  have.	
  But	
  
by	
  then	
  it	
  was	
  too	
  late.	
  His	
  theory	
  was	
  long	
  
dismissed.	
  Nobody	
  looked	
  for	
  its	
  truths,	
  and	
  thus	
  
didn’t	
  find	
  them.	
  	
  
Within two decades of Newton’s 1727 death, Jean 
le Rond d’Alembert (French) mathematically 
proved zero drag around a fore-aft symmetrical 
bluff object under assumptions that real fluids were 
inviscid and that flows around such objects are 
smoothly fore-aft symmetrical in pattern, velocity, 
and pressure. Equal pressures fore and aft meant 
zero drag. A proof by Leonhard Euler (Swiss) was 
less convincing, but used the same assumptions. 
Each added the simplifying condition of 
incompressibility. Later theorists would recognize 
these conditions as useful fictions. 
The defeat of Isaac Newton’s theory of inertially 
caused pressure resistance (drag) by d’Alembert’s 
and Leonhard Euler’s proofs of zero drag is 
complex, but boils down to their unrealistic flow 
symmetry versus Newton’s partially developed flow 
asymmetry.  

In the 18th-century there was no theoretical way for 
d’Alembert	
  or	
  Euler	
  to	
  know	
  their	
  steady	
  
depictions	
  of	
  fore-­‐aft	
  symmetrical	
  object	
  and	
  
flows	
  were	
  unstable	
  and	
  could	
  only	
  make	
  zero	
  
drag	
  if	
  fictionally	
  not	
  allowed	
  to	
  evolve	
  to	
  flow	
  
separations,	
  eddies,	
  turbulence,	
  and	
  asymmetry.	
  
The	
  fictional	
  modern	
  constraint	
  disallowing	
  such	
  
disturbances	
  is	
  called,	
  ‘steady	
  flow,’	
  and	
  
simplifies	
  computational	
  approximations	
  of	
  real	
  
flows.	
  Nor	
  could	
  Newton	
  know	
  that	
  his	
  theory	
  
required	
  the	
  undiscovered	
  concept	
  of	
  unstable	
  
flows.	
  	
  
D’Alembert and Euler assumed fore-aft flow 
symmetry of pattern, velocity, and pressure around 
fore-aft symmetrical bluff objects, yielding zero 
drag. Newton’s theory asserted inertially caused 
fore-aft pressure differences, an asymmetry.  
Newton’s assertion that this pressure difference 
drag makes a momentum exchange between 
projectile and flow, slowing the projectile and 
adding “motion” to wake, adds an asymmetry of 
momentums.  
But Newton never focused on what then happens to 
wake flows, and thus didn’t derive the fore-aft 
asymmetrical flow patterns, instabilities, and 
turbulence that are the mechanisms of his inertially 
caused pressure drag.  

Such	
  disturbances	
  soak	
  up	
  kinetic	
  energy	
  that	
  is	
  
then	
  unavailable	
  to	
  be	
  converted	
  into	
  pressure	
  
recovery	
  aft,	
  making	
  Newton’s	
  unequal	
  
pressures	
  fore	
  and	
  aft	
  –	
  drag. 
Under only apparently similarly inviscid flow 
conditions, Newton’s inertial pressure theory 
predicted drag while d’Alembert’s predicted zero 
drag. A mathematical proof of zero drag vs. a 
verbally described assertion of drag? Newton’s 
theory lost.  

Figure 2 (following page): Timeline of theories 
related to Newton’s inertial pressure instability 
drag. Background art by Leonardo da Vinci, 1452 
-1519.678  
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Modern dismissiveness of Newton’s theory  
When rarely discussed, Newton’s inertial resistance 
is dismissed:  

. . . there is no such thing as a component of 
resistance resulting from the inertia of the fluid! 
As d’Alembert showed . . . the resistance . . . 
when moving in an incompressible, inviscid 
fluid is exactly zero.9 --George E. Smith, “Was 
Wrong Newton Bad Newton?” 2005.  

Even in the definitive 1999 translation of the third 
edition of Principia from its original Latin, the 
authors of the 370-page preface only lament, “The 
loss of interest in Newton’s theoretical model of 
inertial resistance . . .” because it meant the loss of 
interest in his timing of spheres dropped 220' from 
the newly constructed dome of St. Paul’s Cathedral 
in London, “the first accurate measures of resistance 
forces.”10  

However: Smith left out d’Alembert’s and 
Newton’s pivotal assumptions, of steady flows. 

Theory wars  
D’Alembert’s zero drag, and his independently 
derived Bernoulli equation, discussed soon, and the 
Bernoulli equation’s 1752 more modern derivation 
by Leonhard Euler (Swiss), are accurate under 
conditions that would only later be recognized as 
highly useful but fictional simplifying mathematical 
constraints: inviscid, incompressible, ‘steady’ flows. 
We’ll see that zero drag is correct within these 
‘perfect fluid’ idealizations, both for d’Alembert’s 
and for Newton’s approaches. But Newton’s theory 
works under both fictional and real conditions.  
In modern terms, the ‘steady flow’ constraint 
requires, for computational simplicity, that flows 
not be allowed to evolve from d’Alembert’s smooth 
symmetry into turbulence, vortices, or flow 
separations from surfaces. These turned out to be 
the mechanisms of Newton’s inertial pressure drag. 
But they wouldn’t begin to be understood until 
1842, when Sir George Gabriel Stokes would 
mathematically show that even flows that start all 
smoothly following the contours of a rounded object 
don’t necessarily stay that way. Real fluids usually 
don’t, and inviscid flows, even in incompressible 
fluids, never do.  

Unstable flows. Leonardo da Vinci to Sir George 
Gabriel Stokes.  
The first of two tragic turning points for modern 
fluid dynamics came in 1519, with the death of 
Leonardo da Vinci. While his paintings were 
treasured, his scientific notes were scattered among 
private individuals, some sold, some lost, most 
unavailable for almost the next three centuries. 
Among those notes were his sketches of turbulent 
flows and eddies, some downstream of bridge 
pylons or vertical plates in flow, others of water 
falling into a pool.  

…the sheer volume of his studies of water, hundreds 
of drawings and notes, exceeds by far that of his work 
on any other single theme. Leonardo was truly 
enthralled, not to say obsessed by water…11 --Irving 
Lavin, “Leonardo’s Watery Chaos”  

Da Vinci’s sketches could have led early fluid 
dynamicists to consider the pressure-drag effects of 
turbulence and other flow perturbations, and then to 
the concept of unstable flows. That was critical, as 
all sources of non-friction drag spring from unstable 
conditions in flows. The concept of unstable flows 
would be missing in the founding century of fluid 
dynamics.  
In 1842, Sir George Gabriel Stokes suggested that 
steady flow solutions to the Navier-Stokes 
equations (1821 – 1845) are not necessarily the only 
solutions and that eddies might develop.12 Studies 
of wave, atmospheric, and flow instabilities by 
Helmholtz, Rayleigh, Taylor, Kelvin, and others 
followed. (‘Instabilities’ refers both to unstable 
flows and to the patterns of perturbations that 
develop.) In 1883 Osborne Reynolds derived a ratio 
of inertial to viscous forces useful in the prediction 
of transition from laminar (smooth) to turbulent 
flows, now known as Reynolds numbers, Re. 
Understanding of the nature of flows, both real and 
idealized, was more complete.  

Figure 3 (following page): Historical stages of 
drag theory. Unstable flows make disturbances. 
Flow disturbances make pressure drag. Kármán 
Vortex simulation image permission from Tintschl 
BioEnergie.13 Da Vinci sketches.1415 Newton 
portrait.16 
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5: 2020: Wake disturbances are the mechanisms of Newton’s 
theory of inertially caused pressure resistance -- redeemed. 
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The two greats of fluid theory, whose contributions were 
largely lost for centuries or considered disproved and ignored.

Progress and obstruction: 
1744 - 1768: D’Alembert’s paradox and Euler’s Bernoulli equation 
     say zero drag, initially assumed for real flows, 
     defeating Newton’s theory of inertial pressure resistance.
1821 - 1845: NS equations add sheer frictions, ‘solve’ the paradox, 
     with over-emphasis on frictions. 

1: Early: Flows impart force. Moving objects slow within fluid. 
Drag is experienced by all species. 
384 – 322 BC, Aristotle on ‘resistance.’ 
Drag effects on fluid are not formally considered, until: 

Stages of drag theory: 

1519, da Vinci’s fluid understandings, lost for centuries. 

2: 1687: Newton: Friction and pressure drag 
on object puts an opposite force on wake. 
No wake details.
  

Prescient but ignored: 
Newton asserts that 
wake momentum makes 
a lower pressure behind an
object in flow than ahead,
via observation, experiment, 
and 3 laws of motion, 
without discovering the 
turbulence, wake instabilities, 
and flow separations 
that are its mechanisms. 

3: 1842, Stokes: 
Unstable flows!
Eddies! 
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The interim, between da Vinci and Stokes, could be 
center-stage in the long and amusingly convoluted 
history of theoretical aerodynamics if, within a 
quarter century of Newton’s death in 1727 it didn’t 
hold the second tragic turning point – the defeat of 
Newton’s theory of non-viscous inertial pressure 
resistance (drag), by d’Alembert’s correct 
mathematical proof of zero drag on a fore-aft-
symmetrical bluff body under the frictionless 
conditions he assumed were real for air and water, 
and his tacit assumption of steady, symmetrical 
fore-aft flows. Since d’Alembert knew there was 
drag, in 1768 he declared what would become 
known as d’Alembert’s paradox. The defeat of 
Newton’s theory was bolstered by a second 
conclusion of zero drag under inviscid conditions 
also assumed real, by the preeminent 
mathematician, Leonhard Euler.  
Each of the theorist’s physics was immaculate. 
Newton based his theory on his three laws of 
“motion,” one of his terms for momentum. (Why 
didn’t translators from his Principia’s Latin say 
“three laws of momentum?”)  

Modern proofs of D’Alembert’s theory and of his 
and Euler’s independent derivations of the Bernoulli 
equation, under modern descriptions of ‘perfect 
fluid’ conditions, use conservation of momentum, 
but d’Alembert’s was a period-proof. You can see 
its complex description in Olivier Darrigol’s Words 
of Flow.17  
Though far from complete, Newton had a better 
understanding of the nature of real fluids than 
d’Alembert or Euler. Real fluids are like very thin 
honey, sticky. They cling to surfaces and have the 
internal viscous sheer frictions Newton accurately 
defined. But to isolate his inertial pressure 
resistance from its mix with the “frictions” of real 
fluids, Newton asserted inertial pressure drag in 
fictional inviscid fluids. D’Alembert and Euler 
assumed common real fluids were inviscid. So the 
fluid definitions under which they reached different 
conclusions appeared the same, inviscid, given 18th-
century physics. They differed in ways that couldn’t 
be defined without that concept of unstable flow.  
D’Alembert and Euler had no way to know that the 
assumed flow symmetry of their diagrams was 
unstable – that unless prevented by that useful but 

fictitious modern constraint, enforced “steady 
flow,” their diagrammed flows would devolve into 
the turbulence and eddies that prove Newton right.  

Newton again in times of plague  
During the Great Plague years of 1665 -1667, 
Trinity College, University of Cambridge, closed. 
Isaac Newton, recently graduated with a BA, 
socially distanced for two productive years to his 
family’s rural Woolsthorpe home. Now, after 
Cambridge has once more closed for the current 
pandemic, Newton reasserts his disregarded but 
prescient theories of inertially caused pressure 
resistance and a supporting theory of drag 
momentum exchange between object and flow.  

The history of formal scientific 
understandings of drag  
Formal scientific understandings of drag have often 
lagged far behind common understandings. 
Everyone from Pleistocene lemurs buffeted by wind 
in a treetop to Australopithecus Luci wading a 
stream has known that flows put force on objects. I 
once watched an Arab farmer practicing the 
millennial-old art of tossing wheat up in a mild 
breeze to separate the chaff, a balance between 
surface area and weight. A camel understands the 
difference between spitting into the wind versus 
downwind. Here we’ll look at the scientific history 
of drag, in stages.  

 Aristotle (384 – 322 BC) discusses air resistance.18 
Galileo (1564 – 1642), air resistance versus motion 
in a vacuum.  
This level of understanding of drag is experiential, 
and not limited to humans.  
2: 1687: Newton shows that drag on an object 
puts an opposite force on wake. Geese in V 
formation experientially understand this. Newton 
doesn’t study resulting wake patterns.  
2.5: Distractions.  
1744 – 1752, d’Alembert’s paradox and Euler’s 
Bernoulli equation assert mathematical zero drag in 
real fluids! later shown to be fictional fluids.  
1821 – 1845, the NS equations reestablish Newton’s 
“friction” drag, but overemphasize viscous sheer 
frictions as the cause of drag.  
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3: Study of unstable flows and resultant wake 
disturbance patterns – turbulence, instabilities, 
flow separations, wake vortices.  
1842: Stokes’ derivation of wake “eddies” leads 
other theorists into descriptions of wake disturbance 
patterns.  
4: Wake disturbances make pressure drag forces 
on objects in flows. This mechanism of Newton’s 
non-viscous inertially caused pressure drag, with 
his “frictions,” makes his complete theory of 
drag.  
1883: Osborne Reynolds notes that the formation of 
turbulence in pipes retards flow.  
20th-century: Drag from turbulence, instabilities, 
flow separations, and wake disturbances.  
With their pressure and flow sensing lateral lines, 
salmon were aware of the pressure effects of such 
disturbances long before humans’ limited senses.  
2020: Recognition of wake disturbances as the 
mechanism of Newton’s inertially-caused pressure 
drag.  

Overview of Newton’s theories of viscous 
shear friction, object-flow drag 
momentum exchange, and non-viscous 
inertial pressure resistance.  
In 1687 and the next two editions of his Principia, 
Newton built a remarkably complete theory of 
object-flow drag, missing only that concept, the 
unstable nature of most ‘steady’ fluid flows, and 
their resulting evolution to various flow patterns and 
perturbations.  

Newton’s theories of drag have three major 
elements:  
• 1: Viscous shear frictions.  
Newton mapped out fluid “friction” (viscous shear 
friction).  
• 2: Object-flow drag momentum exchange:  
Newton asserted that drag slows projectiles and 
“arouses motion in the fluid.” That is, he asserted 
that any drag makes a momentum exchange 
between object and flow, a fact that in wind tunnels 
is hidden by a perspective trap.  
• 3: non-viscous inertial pressure resistance:  
Newton said the pressure differences were from 
“the inertia of matter.” This was Newton’s theory of 

non-viscous inertial pressure resistance. It predicts 
inertially caused pressure drag in inviscid flows, 
and along with his “frictions,” it describes a 
component of drag in real flows.  
The generality of Newton’s theory of inertial 
pressure drag, from its basis in experiment and his 
three laws of momentum, meant it could encompass 
the unstable fluid conditions and resultant forms of 
drag he couldn’t be aware of.  

A more complete and detailed list of Newton’s fluid 
dynamics contributions follows in a few pages.  

Pressure gradients as the measurable effect of 
fluid inertial forces  
Newton understood the relation between fluid 
inertial forces and pressure, as those who dismissed 
his theory of inertial resistance did not.  

Pressure gradients are the measurable effect of fluid 
inertial forces. Pressure gradients and their fluid 
inertial forces are inseparable.  
Newton would never know the specific mechanisms 
of non-viscous pressure drag, all of which are from 
inertial pressure effects of unstable flow conditions, 
but he knew ‘resistance’ pressure differences 
existed, and he knew they were inseparable from the 
inertia of flows.  
The causal physics of fluid pressures around an 
object in flow is Newton’s second law of motion, 
which quantifies inertia:  
F = ma  
Force = mass x acceleration. The force is pressure 
(p) x area (A).  
As an object moves it has to displace fluid ahead to 
aft. If the fluid were massless, inertia free, the push 
of the object would instantly accelerate it out of the 
way. Pressure gradients wouldn’t happen. If a 
pressure gradient could be formed it would instantly 
dissipate into motion.  
Fluids have inertial mass. Massive fluids inertially 
contain pressures. Inertia is an often unquantified 
property of matter defined as resistance to 
acceleration. Mass, or inertial mass, is inertia 
quantified, by Newton’s second law rearranged:  
m = F/a. The inertial force is equal and opposite to 
an external force – Newton’s third law.  



 

 

9 

An inertially massive fluid resists acceleration out 
of the way of an object plowing into it. A 
compressible fluid is squeezed between the 
forward-moving object and the inertially reluctant-
to-displace fluid ahead. That squeeze is raised 
pressure, which pushes backward on the object, part 
of drag.  

In an incompressible fluid, the squeeze must 
translate directly into displacement motion, with no 
change in fluid volume. Here we could rely on 
simple Bernoulli, which says that in its applicable 
condition of incompressible flow there is an 
exchange of pressure for velocity. But Newton adds 
a time element: It takes the time of acceleration for 
that exchange. 

In Newtonian terms, drag force on the object is 
equal and opposite to its push forward on the 
surrounding fluid. The fluid inertially resists 
acceleration, building the pressures (raised ahead, 
lowered behind) that both put a drag force on the 
object and accelerate the fluid in a retrograde 
displacement pattern.  
That aftward pressure gradient is reinforced by 
centrifuged low pressures to the side of the object. 
Fluid is first accelerated from raised pressures ahead 
to lowered pressures to the sides, and then partially 
slowed toward partially recovered pressures aft.  

Flow patterns evolve from there.   

How flow instability and flow inertia create 
Newton’s fore-aft pressure differences. At a 
general level, Newton’s theories cover all 
causes of object-flow drag.  
Pressure energy recovery: Around objects in flow, 
pressures are generally raised ahead and 
centrifugally lowered to the sides. That makes an 
accelerating pressure gradient, that speeds flows 
toward about the equator of the object. Pressure 
energy is converted to kinetic energy. In 
d’Alembert’s diagram and in perfect fluid flows, 
flows are then slowed until that bump in kinetic 
energy is converted back into raised pressures equal 
to those ahead, for zero pressure drag. That’s 
perfect pressure energy recovery.  
In any non-perfect fluid pressure energy recovery is 
never perfect. Even around streamlined shapes, 

turbulence and other disturbances suck up energy 
then unavailable for pressure recovery.  
Flows have an inertial tendency to go straight rather 
than to conform perfectly to surfaces. They get 
guided by pressures and frictions, but eventually it’s 
like the cliché of herding cats. Chaos erupts, within 
limits – bounded chaos. Rather than behave, flows 
take their easiest local paths, or lowest-energy flow 
paths, discussed later.  

Ahead of an object in flow this mostly results in 
slowed flows and raised pressures, even though 
micro-turbulence can form. But aft of about the 
waist of the object flows are more free to follow 
inertial paths. They keep their speed, in large or 
small patterns or turbulence, rather than having the 
speed converted to pressure. That’s partially failed 
pressure energy recovery.  

Fluid inertia causes instabilities from large-scale 
flow separations and trailing vortex wakes, various 
medium-scale instabilities, and micro-scale 
turbulence. Formation of each absorbs kinetic 
energy then not locally available for pressure energy 
recovery. This usually results in increased drag.  

Well behind an object in flow, such disturbances 
resolve into increasingly smaller motions until at a 
large scale all is more calm, and at a molecular scale 
energy added to wake resolves into the random 
micro chaos that makes pressure and heat.  
The large, medium, and turbulence instabilities:  
1: macro-patterns of flow (also discussed later) in 
which flows accelerated from raised pressures 
ahead of the object to the centrifugally lowered 
pressures to the sides of the object, then inertially 
separate from the object, instead of converging 
(colliding) to restore raised pressures at, leaving 
fore-aft pressure imbalances. Flows keep their 
kinetic energy instead of having it converted to 
pressure energy recovery.  
2: Evolution toward lower energy flow paths also 
results in turbulence and instabilities. Around an 
object in flow, the formation of such perturbations 
uses up kinetic flow energy that is then unavailable 
to restore pressures aft. This effect lowers pressures 
compared to those ahead, for drag, but may be 
partly counteracted by other effects: turbulence and 
viscosity can help flows stay attached to surfaces, 
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increasing convergence pressures aft, partly 
lessening the drag described in “1” just above.  
These are the mechanisms by which Newton’s 
inertial pressure drag makes fore-aft pressure 
differences. It applies to all later-discovered 
unstable flow causes of drag, including turbulence, 
other instabilities, flow separations, cavitations, and 
evolving patterns of wake flows we’ll discuss, 
including the Kármán alternating vortex wake. 
Thus: Along with his study of fluid “fiction” 
(viscous shear friction), Newton’s theory of non-
viscous inertial pressure resistance is the general 
theory that covers all object-flow drag.  

Reasons for defeat of Newton’s theory 
Newton’s theory was correct at a general level, but 
had multiple obstacles to gaining recognition and 
acceptance:  
• 1: The differences in conditions applicable in 
Newton’s and d’Alembert’s theories couldn’t be 
evaluated without late 19th and even 20th-century 
understandings of fluid properties. The domain of a 
function is the set of conditions under which it 
operates. The range is the set of possible results. For 
Newton’s and d’Alembert’s theories, the domains 
have historically appeared similar. Their results 
appeared opposite. Neither was the case.  

• 2: Previous to the concept of unstable flows, 
Newton’s very general theory could not provide the 
specific mechanisms by which fore-aft pressure 
differences would take place even in an inviscid 
‘non-perfect’ fluid and prove him right. Newton’s 
observations and intuition of these inertially caused 
pressure differences were correct, but explanation 
and validation required the concept of unstable 
flows and the resulting instabilities and flow 
patterns.  

• 3: By the times when theorists were mapping out 
the various possible instabilities and associated drag 
effects that could prove Newton’s theory, it was so 
long dismissed that it was never completed. Hence 
this paper.  
• 4: While Newton understood the relation between 
fluid inertia and pressure gradient formation, those 
theorists who dismissed his theory did not.  

Plus, d’Alembert and Euler showed either ignorance 
or disregard of Newton’s theories, perhaps within 
lingering continental antipathy toward Newton after 
his and Leibniz’ vitriol over who invented the 
calculus. Or perhaps it was difficulty in reading the 
Principia’s Latin, and that the first French 
translation to of the Principia, by the natural 
philosopher and mathematician Émilie du Châtelet, 
was only published in 1756, seven years after her 
death in 1749.19 Also, Principia’s most essential 
messages are interspersed within extensive but less 
critical calculations. It’s a daunting read.  

Parsing Newton  
Most simple statements of Newton, including his 
laws of “motion” (momentum) are modern 
summaries. He wrote like a scatterplot interspersed 
with often-esoteric calculations. He also wrote in 
Latin and intended his Principia to only be 
intelligible by scholars. So he requires parsing.  
Newton uses the term ‘inertia,” but also “force of 
inertia,” and resistance “in proportion to the density 
of matter.”20 The modern form of his second law,  
f = ma, rearranged as m = F/a, shows that mass, a 
property of matter, is the quantification of inertia. In 
modern terms, the property of matter called inertial 
mass equals the force required per that matter’s 
acceleration. As density is mass per volume, 
Newton’s “density” is also inertia quantified. 

So it’s equivalent that Newton alternatively 
attributes his non-viscous resistance to inertia and to 
density, with pressure as the resulting instrument of 
non-friction resistance. But though in different 
quotes each may seem causal, they interact: It is the 
inertial resistance of mass to acceleration that 
allows fluid pressures to build without instantly 
dissipating into motion. The pressures are inertially 
contained. In turn, those pressure forces accelerate 
fluids to displacement, the acceleration limited by 
the reactive force called inertia.  
Forces on surfaces resolve into pressure forces 
normal to surfaces and frictions parallel to surfaces. 
Drag is the component of each opposite to the 
direction of travel. That split is invaluable for 
engineering.  
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But Newton astutely divided his resistance forces 
into inertial forces and frictions rather than 
pressures and frictions. Inertial forces are non-
viscous, so show as pressures. But by changing flow 
momentums, shear frictions within flows also alter 
pressure forces. So while pressure is the sole 
instrument of Newton’s inertial resistance, some 
pressures result indirectly from shear frictions.  
Terms: For fictional inviscid fluids we can say 
'Newtonian inviscid inertial resistance.' But except 
for the only known superfluid, liquid helium II, all 
real fluids are viscous, within which ‘inviscid’ can’t 
apply. For real fluids, we'll say, 'non-viscous 
(pressure) forces,' and, ‘Newtonian non-viscous 
inertial drag.’  

In 1726 Newton couldn't consider later recognized 
sources of inertial/density/pressure drag – evolving 
flow patterns, cavitations, flow separations, 
turbulence, and other instabilities. They all fit under 
his inertially caused pressure drag. 

A baker’s dozen elements of Newton’s theory of 
resistance  

Newton’s theory of resistance (drag) between object 
and flow was missing only the later-discovered 
mechanisms of drag resulting from the unstable 
nature of most flows: drag from flow separations, 
cavitations, and (with a partial exception) drag from 
instabilities, including turbulence.  

Newton provided at least thirteen crucial elements. 
Three (viscosity, internal fluid pressures, and that 
drag is increased by object “oscillations”), were 
(re)‘discovered’ by later theorists. Two, his inertial 
resistance and his momentum exchange between 
object and flow, were not. The two opening quotes 
capture Newton’s theory, but I’ll split it up.  
Newton identified the two most basic fluid drag 
causes: “friction” (in modern terms, ‘viscous shear 
friction’) and, “the inertia of matter.” Viscous shear 
friction would be re-derived in the Navier-Stokes 
equations of 1821-1845.  

The resistance encountered by spherical bodies in 
fluids arises partly from the tenacity, partly from the 
friction, and partly from the density of the medium. 21  

‘Tenacity’ means viscosity. ‘Friction’ means 
viscous shear friction,’ which Newton asserted was 

proportional to the shear velocity gradient and the 
density of the fluid. 22  
• First, “friction,” by which he meant fluid-surface 
sheer frictions and viscous sheer frictions within 
fluids. In somewhat difficult wording he said that 
shear frictions were proportional to the velocity 
gradient across flows.23 Simple viscous fluids are 
now called Newtonian fluids. 
• Second, viscosity (tenacity). Viscosity is the 
sticky thickness of a fluid, which under sheer makes 
friction.  

• Third, he asserted that inertially caused, fore-
aft pressure differences made resistance within 
“infinitely fluid mediums” (inviscid fluids), and also 
as a non-viscous component of resistance (distinct 
from friction) within real fluids – water, quicksilver, 
or London air.24 Newton physically intuited his 
‘inertial resistance,’ and demonstrated it by 
experiments with pendulums and falling balls in 
fluids of different densities, and with partially 
questionable mathematical analysis which didn’t 
include the instability drag he wasn’t aware of.25  
• Fourth, he experimentally observed that 
inertial-pressure resistance is proportional to 
fluid density, probably leading to his theory of 
inertial pressure resistance.  

…we showed by experiments with pendulums that 
the resistances encountered by equal and equally 
swift balls moving in air, water, and quicksilver are 
as the densities of the fluids. We have shown the 
same thing here more accurately by experiments with 
bodies falling in air and water.26 

Newton’s experiments with fluids of different 
densities but apparently very low viscosity led to or 
reinforced his theory of inertial pressure drag.  
Note that an object moving through a fictional 
massless (inertia-free) fluid would create no 
pressures and have zero resistance.  

• Fifth, the Newtonian momentum/energy 
exchange: Newton observed that drag slows a 
projectile and accelerates the fluid it passes 
through.27 Or in more general terms, any resistance 
makes an exchange of “motion” or “quantity of 
motion” (his terms for momentum) between moving 
objects and fluid. Drag subtracts momentum and 
kinetic energy from an object and adds momentum 
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and kinetic energy to wake. This implies that even 
in steady-states, conservation of momentum is not 
only along streamlines, but also in the exchange of 
momentum between object and flow (across 
streamlines), a major term left out of the simple 
Bernoulli equation. (Note that the term ‘streamlines’ 
applies only to steady-states. Terms for evolving 
flows will be discussed soon.)  
The trap: this ‘motion’ exchange is disguised in 
wind tunnels, where the model remains motionless. 
Also discussed soon.  

Newton worked with conservation of momentum, 
while Leibniz worked with the mysteriously 
conserved vis visa (living force), mv2, the precursor 
to kinetic energy, mv2/2, but both momentum and 
energy exchanges between object and flow are 
required for any drag.  

• Sixth, Newton recognized that drag on 
projectiles was significant. This was contrary to 
the prevailing notion that air was too thin to slow 
projectiles, which persisted until English artillerist 
Benjaman Robins’ 1742 experimental proofs that 
Newton should have been listened to, a theme of 
this article.28  Still, even with air resistance 
recognized, Newton’s exchange of “motion” (his 
term for momentum) between object and flow, 
necessary for any drag, did not make it into the 
foundational equations of fluid dynamics.  
The truth of his simple projectile scenario would 
soon be hidden by the more complex but simple-
appearing diagrams of our two mathematicians. 
Their diagrams are from what later would be called 
the Eulerian or wind tunnel perspective, and contain 
a perspective trap which makes Newton’s 
momentum exchange seem impossible. In 
consequence, Newton’s momentum exchange 
would be left out of the famous Bernoulli equation, 
visited soon. 
• Seventh, Newton also defined internal pressure 
gradients and resultant fluid motions.29 
Archimedes, in 250 B.C., had suggested that 
pressure differences move fluids.30 Still, until in 
1742 the concept of ‘internal pressures’ was 
redefined by and subsequently attributed to Johan 
Bernoulli, theorists perceived fluid pressures as only 
on container walls.31  

• Eighth, Newton asserted pressures as the force 
applied by his inertial resistance. He asserted 
fore-aft pressure differences resulting from the 
inertia of fluids. This is a pivotal understanding.  
• Ninth, Newton nearly discovers fluid 
instabilities but does label the added drag from 
from what would later be identified as an 
instability, presaging the usually additive effects 
of drag from later discovered instabilities and 
turbulence.  
Newton observed the side-to-side oscillations of 
spheres sinking in water, now known as the effect 
of Kármán vortices alternating in wakes. He 
asserted and experimentally confirmed that these 
oscillations add resistance.32  

Newton came closest to describing the drag from 
flow instabilities he wouldn’t quite discover while 
he had a problem. He was timing the sink of small 
balls of wax enclosing lead in 15.5 feet of water, to 
measure drag. Submerged weight was 6.5 grains, or 
0.42 grams. The balls kept oscillating. He wrote:  

For by its oscillations a ball communicates a greater 
motion to the water than if it were descending 
without oscillations, and it the process loses part of 
its own motion with which it should descend; and it is 
retarded more or retarded less in proportion to the 
greatness or smallness of the oscillation.  

That’s Newton’s momentum drag exchange. 
Momentum that goes into stirring up fluid is 
subtracted from object velocity.  

He didn’t have the idea that the sinking sphere’s 
oscillations were from the unstable condition of the 
fluid rather than the object. Rather, he thought 
imbalances in his pellets caused their oscillations. 
Causal focus on flow instability would have to wait 
for 1842 and Stokes.  

Instead, he assumed one side of the balls was 
heavier and not aligned with travel, causing the ball 
to oscillate like a pendulum. He attempted to 
dampen the oscillations by fitting wax spheres with 
lead near the surface and dropping them through the 
water with the lead initially “lowest.”  

General acceptance of the fact that these specific 
object oscillations result from instabilities in the 
fluid would wait until the 20th-century 
aerodynamicist Theodore von Kármán. Kármán 
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notes that alternating trailing vortices had been 
depicted in paintings for hundreds of years, and 
were photographed by Henry Mallock (English) and 
then by Henri Bénaud.33  
• Tenth, Newton asserted the displacement of 
fluids an object moves through:  

A medium, in yielding to projectiles, does not recede 
indefinitely, but goes with a circular motion to the 
spaces that body leaves behind it.–Isaac Newton, 
Principia.  

• Eleventh, Newton discussed the implications of 
compressible and incompressible fluids. For 
example, he wrote that in a “medium not elastic” 
(incompressible), “motion will be propagated 
instantly.” 34   
• Twelfth, Newton explicitly applied his theory of 
particle impact drag only in atmosphere so 
“rarified” that particles wouldn’t interact to 
form pressures. It was accurate for supersonics and 
extreme altitudes. It was a start toward a molecular 
analysis of drag. I’ll expand the theory to higher-
pressure air and real fluids in the section on Doppler 
pressure drag.  

• Thirteenth, Christiaan Huygens, and then more 
explicitly Newton, formulated the equation for 
centripetal force, to which Newton added its 
inertial opposite, centrifugal force. This would 
lead to the equation for centrifuging of pressure 
gradients across curving streamlines, probably 
derived by Euler, often ignored since it was 
historically difficult to use for engineering purposes. 
But, centrifuging of pressure gradients across 
streamlines is the singular mechanism for the 
lowering of pressures to the sides of objects and the 
resulting pressure gradients along streamlines. Even 
more than frictions, centrifuging is a primary cause 
of pressure gradients in subsonic fluids. But that’s 
another story.  

The experiment Newton could have made, for 
friction vs. pressures from inertial flow 
disturbances  

[Newton was] “unable to distinguish such 
considerable ancillary distorting factors as skin 
friction and flow disturbance.”3536 –Cohen and 
Whitman, quoting D. T. Whiteside, 1975.  

Here in the 21st century, we could build simulations 
or wind tunnel experiments that would show friction 
drag vs. inertial/instability caused pressure 
components of drag around objects. It’s not simple, 
because while laminar flow drag varies with 
velocity, turbulent flow drag varies with the square 
of velocity, and it gets more complex with flow 
separations and trailing vortices. The goal is to 
compare objects of different shapes but with similar 
skin friction drag. That’s easiest in a 2D analysis. 
For example, our quantitative buddies would derive 
the surface friction, at some moderate speed, of a 
2D section of a cylinder of diameter D, with flow 
normal to axis. Then they’d pick a thin, streamlined 
minimum drag symmetrical airfoil (in zero lift) and 
derive combinations of chord and flow speed which 
yield similar skin friction per span. If ambient flow 
speed is similar for both, the airfoil chord will 
probably be somewhere around πD/2. So they both 
have about the same skin friction per span, but the 
cylinder will generate much stronger instability drag 
and much stronger total drag. The difference will 
mostly be Newtonian inertial instability pressure 
drag.  
Newton could have done something similar, perhaps 
with a cylinder and a flat plate in flows, probably 
with his typical hypothesizing: ‘If frictions are 
proportional to flow speeds, then… Or if frictions 
are proportional to velocity squared...’ The results 
would have been extremely approximate, and 
wouldn’t match Newton’s precise mathematical 
predictions, but indicative. Even without such an 
explicit experiment, his observations of real object-
fluid interactions combined with his physical 
intuition yielded his correct assertion of both 
friction drag and inertial pressure drags on objects 
in real fluid flows.  

More simply, modern analysts could emulate what 
Newton did, either experimentally or with 
computational fluid dynamics, comparing drag on 
an object in flows of similar velocity and viscosity 
but different density. They’d hold friction constant, 
and see how drag varied with fluid density. Holding 
friction constant would require various tweaks or 
compensations, as flow characteristics change with 
fluid density, and as the viscosity of common fluids 
is low but not identical.  
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D’Alembert’s and Euler’s Bernoulli 
analyses  

D’Alembert’s analysis  

D’Alembert diagrammed fore-aft symmetrical flows 
around a fore-aft symmetrical bluff object. He 
concluded that with velocities and patterns of flow 
symmetrical fore and aft, pressures would also be 
balanced fore and aft, for zero drag.  
D’Alembert’s analysis was based on his 
independent derivation of what Euler would 
formalize in 1752 as the Bernoulli equation, which 
asserts a lossless exchange of fluid pressure, 
velocity, and fluid elevation along streamlines, 
implying zero exchange between object and flow:  
p + ½ ρv2 + ρgh = constant along streamlines  

Traditional Bernoulli is in terms easily measurable 
for engineering, pressure (p), density (rho, ρ), 
velocity (v), gravity (g), and height (h).  

When looking at the drag of an object submerged in 
an infinite fluid, or just deeply submerged in a real 
fluid, the ρgh elevation term ρgh is ignored.  
Note that the genesis of pressures around objects in 
flow is a challenge for 21st-century theorists. For 
18th-century theorists it was an invitation to get lost 
in seemingly simple convolutions.  
D’Alembert searched for the causes of drag in three 
papers, of 1744, 1752, and 1768, an indication that 
he didn’t believe his own results. Since there is 
resistance, in 1768 d’Alembert declared his 
paradox.37  

And then the unexamined axioms that founded fluid 
dynamics were carried into the future.  

The convolutions of conditions 
Modern theorists usually write that d’Alembert and 
Euler derived their proofs and Bernoulli equations 
within ‘perfect fluid’ conditions: incompressible, 
frictionless, steady (and ‘irrotational’) flows with no 
flow separations. But those are modern conditions 
recognized as simplifications to keep computations 
simple. Also for simplification, enthalpy (heat loss), 
entropy, and work are generally also ignored. And 
the term ‘irrotational’ is from the mid-19th century 

and associated with Herman von Helmholtz’s 
concept of vorticity, each beyond this paper.  
More importantly, d’Alembert and Euler didn’t 
specify steady flows, as the opposite concept, 
unstable flows, didn’t exist. Their diagrams show an 
assumption of steady, laminar, attached flows that 
are symmetrical around their symmetrical object. 
Such flow conditions are unstable and will devolve 
into the instabilities that provide Newton’s fore-aft 
pressure differences, for drag,38 unless fictionally 
prevented by the modern simplifying condition, 
‘steady flows.’  
Oddly, both theorists seem to have been unaware of 
Newton’s study of “frictions” (viscous shear 
frictions” within flows. For d’Alembert and 
especially Euler, the inviscid condition was more an 
assumption about real fluids than a simplifying 
model. This is illustrated by Euler’s criticism of the 
English artillerist Benjamin Robins’ assertion that 
ball spin on an axis crosswise to travel caused veer, 
which would require fluid viscosity. Robins’ 
experimental results were decisive, yet Euler 
asserted irregularities in manufacturing.39  

Both theorists thought they were describing real 
fluids, almost, despite recognizing the paradox of, 
as Euler put it, “their very great resistance.”40 Under 
real conditions they didn’t understand (Newton’s 
viscosity) or couldn’t even consider (unstable 
flows) the conclusion of zero drag is false.  

Caveats: D’Alembert did consider frictions, but 
didn’t pursue the analysis as a resolution of his 
paradox. Darrigol observes that in 1749 he evoked 
velocity-proportional fluid-surface friction, and 
fluid ténacité, viscosity. And in 1744, noting the 
mathematical zero drag, “d’Alembert evoked the 
observed stagnancy of the fluid behind the body to 
retain only the Bernoulli pressure on the prow.”41 
Thus he came close to investigating the evolution of 
unstable flow patterns. And then he retreated to his 
mathematical analyses.  
D’Alembert’s and Euler’s lack of knowledge of the 
nature of real fluids allowed two inexplicit 
assumptions, inviscid fluid and steady flow, which 
would later develop into explicitly fictional modern 
simplifications. The third condition, incompressible 
fluids, was intentional simplification. It survives as 
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part of the ‘perfect fluid’ idealization. Under these 
modern conditions, d’Alembert’s proof and his and 
Euler’s Bernoulli equation are correct.  

Euler’s ‘proof’ of zero inviscid drag  
Euler was becoming the dominant mathematician of 
his day, so his paradox ‘proof’ would have carried 
weight. But his proof, in his 1745 Commentary on a 
work by Benjamin Robins, can mostly be ignored.  

Euler’s ‘proof’ does contain a prequel to perhaps 
the most neglected equation in applied 
aerodynamics, the equation for the centrifuging of 
pressures, which is a simplified but more explicit 
form of his equation for forces normal to 
streamlines, from his 1752 equations of inviscid 
fluid dynamics. It’s discussed in mechanism 8, near 
the paper’s end.42  

And Euler did diagram ‘canals’ of flow around an 
object, now called streamtubes, perhaps after a 1736 
figure by Daniel Bernoulli.43 Streamlines don’t have 
volume, so they can’t carry momentum. 
Streamtubes are the volume-momentum-energy 
form of streamlines, with infinitesimal cross-
sectional area.  
But Euler’s ‘proof?’ Euler diagrammed his ‘canal’ 
streamtubes around only the fore half of an object 
and claimed their flows wouldn’t change velocity 
from well ahead to the sides of the object (very false 
except in very slow flows), implying no change in 
pressure, and thus no drag.44  
Still, having been twice ‘proven’ wrong, Newton’s 
theory of inertial pressure resistance was ignored, 
when even considered.  

Future geometers (mathematicians) would claim 
d’Alembert’s paradox ‘resolved’ by each newly 
recognized form of drag: First, Robins’ and Euler’s 
cavitations, then the viscous shear frictions of the 
Navier-Stokes equations of 1821 - 1845. And later, 
flow separation patterns, turbulence, and 
instabilities, without recognizing them as the 
mechanisms of Newton’s inertial pressure drag. 
Still, it’s most common to hear the resolution of 
d’Alembert’s paradox attributed to sheer frictions, 
and only rarely to unstable flows.  

Figure 4: D’Alembert’s paradox. His 1752 sketch 
implies fore-aft symmetrical patterns of flow, 
velocity, and by his independent derivation of the 
Bernoulli equation, pressure, for zero drag.45 He 
merely assumed real fluids are frictionless. And he 
didn’t have the 19th-century concept of unstable 
flow. The modern simplifying constraint, ‘steady 
flow,’ hides inertially caused pressure forces that 
otherwise would make this flow pattern 
asymmetrical and turbulent.  
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Euler’s fluid equations, limited interpretations  
Judging by his 1745 diagram, Euler wasn’t strong 
on physical intuition but would become the most 
prolific mathematician of single-author papers in 
history, with half of his over eight hundred papers 
after he was blind.  
Based on his friend Daniel Bernoulli’s diagram of 
fluid jetting from a leak in a container, and on 
Daniel’s father Johan’s definition of internal 
pressures, Euler in 1752 derived essentially the 
modern form of the Bernoulli equation for 
exchanges of pressure, velocity, and elevation along 
streamlines. With an equation for the centrifuging 
of pressure gradients across streamlines, these form 
the simplified ‘one-dimensional’ version of Euler’s 
fundamental equations of inviscid fluid dynamics.  
It’s truly amazing that Euler’s equations, still 
fundamental to inviscid aerodynamics, were written 
in a time when flintlock muskets were high tech. 
The general form of the equations just says, “Stuff 
happens in three dimensions,” which at least allows 
any future (or missed) fluid dynamics discoveries. It 
is the simplified interpretations that were 
incomplete. Notably, Euler left out Newton’s 
viscosity, which the Navier-Stokes equations of 
1821-1845 would include. And tragically, he didn’t 
mathematize Newton’s momentum exchange across 
streamlines, thus drag and thrust didn’t make it into 
his Bernoulli equation.  

Here again we see a general theory for which 
specifics would only be rediscovered or developed 
later.  

Perfect fluid useful theories 
Despite the narrow assumptions under which they 
theorized, and with Newton’s theories largely 
bypassed, d‘Alembert and Euler effectively laid the 
foundations of modern fluid dynamics and derived 
the most useful equation in the history of fluid 
dynamics, without even suspecting that most flows 
are unstable.  

As knowledge of real flows provided contrast, 
d’Alembert’s and Euler’s assumptions of inviscid, 
incompressible, and steady flows would be 
formalized into the simplifying fictional group of 
conditions called, ‘perfect fluid.’ That last 

condition, ‘steady flow,’ became formalized as the 
license to, for computational simplicity, ignore 
instabilities, turbulence, vortex eddies, flow 
separations, and cavitations.  
 

Figure 5: Centrifuging of pressures: In Euler’s 
1745 diagram (left) he incorrectly asserted zero 
velocity change from ahead to the side of the 
object, and thus no pressure change for no drag, 
apparently assuming fore-aft symmetry. But he did 
hint at centrifuging of pressures, asserting that 
pressures would only be raised between ‘a’ and 
‘m.’ He didn’t consider that this would make a 
pressure gradient along streamlines, nor did he 
consider the centrifugal lowering of pressures 
from ‘m’ to ‘d,’ strengthening that gradient and 
accelerating flows to the object’s sides. Frederick 
William Lanchester’s 1907 diagram (right) shows 
centrifuging of raised pressures ahead and aft, 
centrifugally lowered pressures, and narrowed 
streamtubes (higher velocities) to the sides.46  
This ‘perfect fluid’ simplification was both 
historically and currently incredibly useful. Its key 
mechanism is Euler’s Bernoulli equation.  

Bernoulli is the one equation of fluid dynamics 
simple enough to be solved with chalk and 
blackboard for pressures and velocities on surfaces, 
so it formed the backbone of early fluid engineering 
and later applied aerodynamics. Within carefully 
selected real conditions, such as over the nose of a 
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commercial aircraft or outside the ‘boundary layer’ 
(a thin layer of flow over a wing or object in which 
shear friction forces are significant), flow 
predictions based on fictitious ‘perfect fluid’ 
conditions and the Bernoulli equation closely match 
reality. Even where its predictions didn’t match 
reality, those predictions could often be calibrated 
empirically, especially after the development of the 
first wind tunnel, in 1771, by Frank H. Wenham.  

For example, in the WWI years, Ludwig Prandtl 
used the Bernoulli equation, which implies ‘perfect 
fluid,’ to build the first method of predicting lift and 
drag around theoretical wings. His predictions were 
off by about 25%, but predictably off, so his method 
could be calibrated against empirical wind tunnel 
tests.  
But the incompleteness of early fluid dynamics also 
meant a split between the effectiveness of hydraulic 
engineers and the odd zero-drag predictions of the 
theorists. This incompleteness persisted even after 
the Navier-Stokes equations of 1821 – 1845 added 
viscous sheer friction to Euler’s inviscid equations 
of fluid dynamics. Stokes, 1845, created and then 
rejected an idea that persisted. The idea was that an 
object in flow would drag an increasing volume of 
‘deadwater wake’ behind it, slowing it. Even in 
WWI, the British attempted to calculate lift and 
drag with odd math of flat plate forces developed by 
Gustav Kirchhoff. All this while the realistic drag 
from instabilities and turbulence was slowly being 
recognized and described.  

In the 19th century . . . as Sir Cyril Hinshelwood has 
observed ... fluid dynamicists were divided into 
hydraulic engineers who observed things that could 
not be explained and mathematicians who explained 
things that could not be observed.47 –Sir James 
Lighthill, Nature, 1956. 

Newton’s theory yields zero drag under 
d’Alembert’s conditions 
Within d’Alembert’s assumptions, or under modern 
‘perfect fluid’ conditions (where ‘steady flow’ 
means flow evolution is disallowed), the 
instabilities that drive Newton’s inertial pressure 
resistance can’t exist, so his also yields 
d’Alembert’s balanced fore-aft pressures, for zero 
drag. That doesn’t mean that Newton was wrong, or 

that inertial forces don’t exist, but that inertial 
forces and resulting pressures are then also fore-aft 
balanced.  

Newton’s approach works within d’Alembert’s 
conditions. Not so if d’Alembert’s approach is 
applied to real fluids, for which it is incomplete.  
Another difference: d’Alembert and Euler started 
within what they could prove mathematically, and 
with assumptions that evolved into the modern 
‘perfect fluid’ simplification. Newton started with 
his experimental observations and applied any 
conditions he could think of as thought experiments, 
including inviscid and incompressible (“not 
elastic”). In short, d’Alembert and Euler put 
mathematics first and built a very limited theoretical 
model. Newton put observed reality first and found 
truths the mathematicians would miss. What was 
similar was that all were open to future discoveries 
of the sources of drag.  

Over-attribution of drag to viscosity  
When Newton’s shear frictions were reinvented via 
the Navier-Stokes equations of 1821 - 1845, 
theorists jumped on the bandwagon. With Newton’s 
inertial pressure drag dismissed, and before its 
instability mechanisms were recognized, non-
viscous drag was theoretically hamstrung.  

The over-attribution of drag to viscosity persists at a 
popular level. To wit (or lack of), as of this writing, 
the first paragraph of Wikipedia’s article on drag 
contains, “Even though the ultimate cause of a drag 
is viscous friction, the turbulent drag is independent 
of viscosity.” A diagram of flat-plate drag shows the 
opposite.48 Ah well.  

Conditions, ‘perfect’ vs. almost real or 
real fluids  
Comparison of theories hinges on the fluid 
conditions specified or assumed, and on the 
definitions of those conditions. The easiest to label 
is ‘real,’ though the nature and behavior of real 
fluids is still one of the most challenging frontiers of 
science.  
D’Alembert’s and Euler’s condition of 
incompressibility was intentional simplification. 



 

 

18 

Steady flow and inviscid flow were incorrect 
assumptions about real fluids.  
Recognition that ‘perfect fluid’ conditions are 
simplificationa developed as knowledge of real 
fluids developed. And each simplifying condition 
has nuances of definition and historically 
unforeseen implications.  

‘Perfect fluid’ simplifications are invaluable for 
computations that for real fluids might be 
impossible. Yet the ‘perfect fluid’ simplification is 
also an invitation to unreality:  

Steady flows?  
 ‘Steady,’ in modern terms, means flow separations, 
instabilities, turbulence, or evolution to flow 
patterns of lower path energy, are disallowed. It’s a 
fictional simplifying constraint to allow simplified 
computations that still may approximate reality.  
The ‘steady’ flow constraint implies constant 
velocity flow. Constant velocity can only take place 
in drag-free ‘perfect fluid’ conditions, or under 
thrust.   
D’Alembert and Euler assumed real flows around 
bluff objects would be steady. ‘Steady’ can be true 
of viscous flows at very low speeds, low Reynolds 
numbers, a ratio of inertial forces to viscous forces. 
But it’s generally not true of low-viscosity fluids 
like air or water at moderate speeds around objects 
and is never true of inviscid flows, which always 
develop turbulence unless constrained by a fictional 
‘steady flow’ condition.   

Even under ‘perfect fluid’ conditions, the zero-drag 
pattern of flows is unstable, and if allowed by 
skipping the ‘steady flow’ restriction, will evolve 
toward lower energy flow path patterns, in which 
fore-aft inertial forces and resulting pressures are 
unequal, yielding purely Newtonian inertial 
resistance. Everything depends on how we define 
simplifying fictions.  

Steady flow conflicting definitions  
‘Steady flow’ is initially defined as no change in 
velocity or pressure over time relative to the object. 
That’s  
dv/dt = dp/dt = 0.  
and implies an unchanging flow pattern. But that’s 

from a wind tunnel, or Eulerian, perspective. There 
the observer is at the velocity of the object, so only 
flows appear to have velocity.  

From the perspective of watching how a ‘parcel’ of 
fluid is disturbed by a passing object, fluid 
velocities and pressures around the object aren’t 
constant, even in an Eulerian steady flow. Here the 
observer is at the same velocity as undisturbed air, 
like standing on grass and watching a baseball zip 
by. That’s the analytically valuable Lagrangian 
perspective, which we’ll use later on.  

‘Steady flow’ may also be an average, ‘mean-steady 
flow,’ if there are fluctuations, turbulence, or other 
instabilities. That’s bounded chaos; the chaos of 
turbulence has statistical limits. 

‘Steady flow’ may mean three things (Eulerian 
perspective):  
1: Real mean stable flows: real fluid flow has 
reached equilibrium, constant ‘mean-steady flow.’  
2: Unreal but stable or mean-stable flow: a flow that 
under some fictional specified conditions would be 
steady even if not forced, at equilibrium, with or 
without statistically bounded fluctuations. But some 
flows, such as the alternating Kármán vortex wake, 
may show ‘mean steady flow’ with such large 
regular fluctuations that it challenges the intuitive 
notion of ‘steady.’  
3: Theorist enforced stability of unstable flows! 
This is a fictionally enforced condition of steady 
flow, in which velocities, pressures, and flow 
patterns are held constant over time, even if the 
flow would be unstable and would evolve if 
allowed. This is commonly expressed as assuming 
no flow separations, instabilities, or turbulence. 
These may provide computational simplicity, or a 
starting point empirically adjustable toward closer 
approximations of reality.  

Defining and enforcing an unstable flow as stable is 
a rationality trap that can hide Newtonian inertial 
resistance.  

Instabilities in the inviscid flow condition  
Inviscid flows, included under ‘perfect fluid’ 
conditions, are unstable and always form 
turbulence, and sometimes other instabilities. This 
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is generally ignored under the theorist-enforced 
constraint of ‘steady flows.’ 
Viscosity dampens turbulence. When as a child, or 
last week, you irritated your dear mother by 
whipping your butter knife around in the jar of 
highly viscous honey, you couldn’t make 
turbulence. You could develop turbulence in your 
soup bowl. Your mother relents. Since she sees you 
are studying Science, she gives you a bowl of 
inviscid chicken soup. As you moved your butter 
knife even slowly in your bowl of fictional inviscid 
chicken broth it always developed turbulence.  
Turbulence is inhibited at low Reynolds numbers – 
at a low ratio of fluid inertial forces to viscous 
forces. Turbulence always forms at higher Reynolds 
numbers. In a fictional inviscid fluid, the 
denominator, viscous forces, is zero, yielding an 
infinite Reynolds number, under which turbulence 
always forms.  

Even the inviscid condition is unstable. Viscosity in 
real fluids is from random molecular velocities 
sharing momentums between flow lamina, and from 
weak chemical bonds. Without the dampening of 
viscosity, inviscid fluids develop turbulence in 
flows around objects. Turbulence also shares 
momentums between flow lamina, making 
‘effective viscosity,’ but which the unstable nature 
of turbulence makes less predictable than molecular 
viscosity. Turbulence makes an inviscid fluid act 
sort of viscous and a viscous fluid act more viscous, 
but with unpredictable variations.  

The odd implications of ‘incompressible.’  
But if the medium is not elastic, then, since its 
parts…cannot be condensed, the motion will be 
propagated instantly to the parts where the medium 
yields most easily, that is, to the parts that the 
vibrating body [or the “projectile”] would otherwise 
leave empty behind it.49 –Isaac Newton, Principia  

Newton was only correct within the assumption that 
would evolve into the perfect fluid constraint of 
‘steady flow.’ Even then ‘instantly’ doesn’t mean 
with instant velocity change. It means simultaneous 
accelerations.  

With unstable flows allowed, three other things 
happen:  
• “propagation to the parts where the medium yields 

most easily” (correct), “behind it” (conditional) 
becomes: ‘propagation to evolving flow patterns, 
turbulence, and wake disturbances.’  
• ‘Steady flow’ implies constant relative velocity of 
flow and object. Rather, that relative velocity will 
slow due to drag, absorbing some of that 
‘instantaneousness.’  
• Pressure gradients will be limited by object inertia 
or by thrust, so changes in fluid velocities will be 
limited by fluid inertia.  
Newton played with the implications of ‘elastic’ 
(compressible) and ‘non-elastic’ (incompressible) 
fluids.  

Incompressibility is a useful fiction with odd, often 
unreal implications, some of which, as the above 
quote shows, Newton was aware. Pressure 
differences exist but ambient pressure is 
meaningless. An incompressible universe is a 
universe of constant local volume. That makes 
cavitation, which increases local volume, 
impossible, so the fluid acts as if under infinite 
pressure, which precludes cavitation. (Note that 
within the extreme pressures of the Mariana trench 
cavitation probably wouldn’t happen even behind a 
bullet.)  

With the conditions of inviscid and steady flow 
added to incompressibility, displacement pressures 
and velocities can approach infinity with no 
disruption to fore-aft flow symmetry of inertia or 
pressures, for zero drag at any speed, as proved by 
d’Alembert. Recently it has been shown that 
d’Alembert’s zero drag under perfect fluid 
conditions holds for any shape, possibly excepting 
sharp corners.50 Flow patterns fore and aft don’t 
vary with the velocity of the object through the fluid 
or with the strength of displacing pressure gradients, 
which has no limit. 

Figure 6 (following page): Comparison of 
Newton’s, d’Alembert’s, and Euler’s period 
conditions and conclusions versus modern defined 
conditions and conclusions.  
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With no cavitation possible, as radius of flow 
curvature around sharp corners approaches zero, 
fluid velocities approach infinity, for infinitely 
strongly centrifuged pressure gradients. While that 
would rip normal matter apart, in a fictional 
universe, sharp corners can be defined as infinitely 
strong, for a meaningful relation between infinities.  

Negative pressure differences, true ‘suck,’ make 
sense. In simulations such as X-Foil, with 
incompressibility as a condition, the speed of sound 
is set at infinity.  

For objects slower than about a third of the speed of 
sound in real fluids, compressibility or lack doesn’t 
have much effect on flows.  

Circular proof of the Bernoulli equation  
For a perfect fluid and the condition of steady flows 
interpreted as not allowing flow evolution even 
when the flow is unstable, the Bernoulli equation 
can be derived from conservation of momentum. 
It’s a circular argument: where the strictest 
conditions preclude losses along streamlines, 
momentum is conserved along streamlines.  

The Newtonian theory shows that with any drag 
there is also an exchange of momentum and energy 
across streamlines.  

Terminology of stable vs. evolving flows: 
streamlines, pathlines, streaklines  

Steady states can be from the passing flow or 
passing object perspective. It is only in steady states 
that the terms ‘streamlines’ and ‘streamtubes’ apply. 
In a steady-state, the path of particles released at 
different times in a given spatial relation to the 
object always follows the same streamline.  

A single particle path is called a ‘pathline.’ A series 
of particles released at the same point relative to the 
object is called a streakline.  
In evolving, non-steady-state flows, each particle 
released, again from a point in given relation to the 
object, will describe a different pathline. So for non-
steady-state flows, streamlines become 
meaningless. We can’t say, ‘streamline,’ when 
we’re talking about evolving flows. We have to say, 
‘pathline,’ or, ‘streakline.’ Intermittently released 
particle paths won’t coincide in a streamline. 

Rather, they map out a streakline, much like the 
changing path one half-imagines when waving a 
Roman candle firework, or waving a thin stream 
from a hose nozzle, the earliest released bits further 
downstream. Streaklines may separate from a 
surface, perhaps to coil into a developing vortex or 
turbulence.  

Worse, ‘pathlines’ and ‘streaklines’ don’t have 
volume or mass, so dimensionally they can’t carry 
energy. Terminology for the energy forms is not in 
common use. We could say, ‘pathtubes’ or 
‘streaktubes’ to refer to the paths of a single or 
series of tiny 3D fluid ‘parcels,’ when talking about 
energy. Or we could be less precise, and just say, 
“Energy is not constant along streaklines.”  

Newton’s motion exchange 

The paradox in terms of Newton’s exchange 

D’Alembert’s paradox can be restated in terms of 
Newton’s exchange: If there is no exchange of 
momentum between object and flow there is no 
drag. Ditto for kinetic energy.  

Newton’s exchange is verified by his second and 
third laws: 

FDrag = m∆vObject/sec = - m∆vFluid/sec = -FFluid  
This says, ‘The pressure and friction drag forces on 
the object equals it’s change in momentum/time 
which is equal and opposite to the fluid’s change of 
momentum/time which is caused by the pressure 
gradient and friction forces on the fluid. Forces on 
the object and fluid are equal and opposite.’ 
The middle terms are the ‘ma’ from Newton’s F = 
ma, with ma as the change (∆) in momentum (m∆v) 
per second.  

This just repeats Newton’s third law of momentum 
(“motion”), that for every force (here drag on an 
object) there is an equal and opposite force (on the 
fluid).  

Newton’s motion exchange at terminal velocities  

When object-flow drag exists, thrust will accelerate 
the object until increasing drag equals thrust, for a 
terminal velocity. That’s predicted by the classic 
Bernoulli equation’s exchange of pressure for fluid 
velocity. When pressure differences are limited, the 
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exchange of pressure for fluid velocity is limited. 
Fluid just doesn’t get out of its way fast enough.  

. . . the resistance in every fluid is as the motion 
excited in the fluid by the projectile51 --Newton, 
1726  

The flows around a sinking object are in a steady 
state at any terminal velocity. They don't increase or 
decrease in kinetic energy. So energy continuously 
added by elevation loss (or other thrust) must end 
up in wake. That’s addition of energy to the sinking 
object (force x distance) and Newton’s ‘resistance’ 
exchange, with drag subtracting that energy and 
adding it to wake.  

Note that the same argument applies even to real or 
fictional frictionless venturis, commonly depicted as 
gradual flow restrictions in pipes. Flows around 
objects or through restrictions are similar. Between 
non-perfect flows and objects there will always be 
drag. Limited pressure thrust will result in finite 
raised upstream fluid pressures, limiting the 
pressure gradient between upstream pressures and 
throat for terminal velocities, with any thrust input 
becoming wake energy.  

This has been an analysis at the limited level of 
‘what must be?’ Again, it’s theory at the general 
level, without specifics. Thus it raises questions: 
What does happen? How does it take place?  

Anomaly. Non-constancy along streamlines 
A commonly ignored Bernoulli anomaly around 
wings demonstrates that energy is not constant 
along streamtubes. When in lift, below the leading 
edge of a wing and its forward stagnation point 
(where flow separates to upper and lower) there is 
always local raised pressure. The anomaly is hidden 
by the wind tunnel perspective: As air approaches 
this raised-pressure region it slows, which is indeed 
a Bernoulli exchange of pressure for velocity. But 
this perspective obscures that the air is slowed by a 
steeper pressure gradient than classic Bernoulli 
would predict. It’s so strong that it diverts some of 
the air forward, up and around the wing’s leading 
edge, helped by centrifuged low pressures atop the 
wing.  
But from the perspective of a wing moving into 
previously still air, a tiny ‘parcel’ of still air gets 

approached by the raised pressure under the wing’s 
forward stagnation point. It gets pushed from zero 
velocity to forward velocity even as it finds itself 
within increasing pressure. Pressure and velocity 
are increased simultaneously. So energy is not 
constant along the encompassing streamtube 
(steady-state) or streaktube (non-steady). Rather, we 
are watching a raised-local-energy immersed bow 
wave. Raised-pressure waves always carry elevated 
local energy.  
‘Bow wave’ usually refers to the elevated surface 
wave forced by a ship’s prow. Herein I’ll use the 
terms bow and stern pressure waves to refer to the 
raised and lowered pressures ahead and behind 
objects immersed in flows. Where immersed far 
from surfaces, bow pressure-wave energy doesn’t 
leak into surface wave elevation and motion.  

Fluid incompressibility is usually tied to the 
assumption that local volume is held constant, either 
by repeating Newton’s conditions of an infinite 
fluid or fluid in a container, or where strongly 
‘contained’ by a large inertial mass of surrounding 
fluid. Cavitation, which would increase volume, 
then can’t happen, and ‘immersed bow wave’ 
pressures can only dissipate into accelerating fluid, 
again: unless near a surface. Even then the source of 
a raised surface bow wave is the bow pressure wave 
ahead of a moving immersed or partially immersed 
object.  

Spheres immersed in flow at all non-zero Reynolds 
numbers exhibit raised pressures ahead and lowered 
pressures aft, both in real and simulated ‘perfect 
fluid’ flows. (Reynolds number, Re, is a ratio of 
inertial to viscous forces, so within a given fluid 
higher speeds make higher Res.) Pressure profiles 
aft and flow separations are strongly affected by 
turbulence.525354  

As a previously still parcel of fluid is approached by 
a sphere it is initially pushed forward by increasing 
pressures. Again, pressures and velocities are 
increased simultaneously. Energy is not constant 
along streamlines. Something is missing from the 
traditional Bernoulli equation, which, under its 
fictional perfect fluid conditions, predicts constant 
energy along streamlines and no Newtonian 
exchange of energy across streamlines.  
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(Yes, as the sphere then overtakes the fluid parcel, 
fluid will get sucked rapidly back in a displacement 
pattern.) 

Newton’s ‘motion’ resistance exchange 
A neo-Newtonian energy exchange across 
streamlines (or streaklines, for an unsteady flow) 
allows analysis of the added complexity from thrust 
or wind tunnel blowers, and drag.  

To get Bernoulli in energy form we multiply 
through by volume. Volume is streamtube cross-
sectional area x distance. Pressure x area x distance 
(pAd) = force x distance = work, energy. Simplistic 
energy Bernoulli:  
pAd + ½mv2 + mgh = constant along streamtubes 
(ignores energy exchanges across streamlines). 
This says, along a streamtube the sum of pressure, 
kinetic, and potential energies in each tiny fluid 
parcel of equal mass is equal.  

Newton’s “motion” exchange between flow and 
object says otherwise:  

Pressure . . . not only arouses motion in the fluid 
but also acts upon the projectile to retard its 
motion; and therefore the resistance in every 
fluid is as the motion excited in the fluid by the 
projectile55 --Newton, 1726  

In energy terms, 1: Drag exchanges energy between 
local flows and object velocity, so energy in flows 
cannot be constant along streamlines. 2: The kinetic 
energy of an object lost to drag equals energy added 
to wake. For an object of constant velocity, thrust 
energy equals energy added to wake. That is 
commonly accepted but does not commonly enter 
the Bernoulli equation as a Newtonian exchange.  

A Newtonian drag exchange term for Bernoulli  
The Bernoulli equation is recognized as simplistic. 
Several complications are usually explicitly 
ignored, mainly for engineering simplicity, or as 
having minimal impact on most calculations. These 
include losses to entropy, enthalpy (heat loss), and 
work, a form of energy. This ‘work’ is usually 
ignored, but shouldn’t be: it is precisely a 
Newtonian exchange of energy between object and 
flow, drag.  

Adding a Newton object-flow drag exchange term 
to the Bernoulli equation allows non-constant 
energy along streamtubes, immersed bow and stern 
waves with local energy concentrations, includes 
the possibility of Newtonian inertial drag, and has 
wind tunnel implications. 
(pAd + ½mv2 + mgh) flow field – (½mv2 + mgh)object – 
etc. = constant  
This just says that drag can suck kinetic energy out 
of the object, which slows, and adds kinetic energy 
to wake flows. (Or visa versa.) Energy is thus not 
constant along streamtubes if there is inviscid drag, 
or any drag.  

To get more complete we could add a thrust energy 
term. Then for an object maintained at constant 
velocity, energy added by thrust would end up in 
the flow field as wake disturbance.  

Terminal velocities show Newtonian 
momentum/energy drag exchange 
Where there is drag, thrust is required to maintain 
velocity. Any limited thrust on an object results in 
limited displacement pressure gradients around the 
object that can only accelerate an inertial fluid out 
of the way of the object to limited velocities, 
making a terminal velocity of the object. At 
terminal velocities, drag equals thrust.  

Further, at terminal velocities, thrust energy (force x 
distance) can’t go into increasing object kinetic 
energy. Even in inviscid but non-steady flows, via 
instability drag, thrust energy accelerates wake, 
exactly as Newton described, validating his 
‘motion’ exchange.  

Hiding Newton’s exchange: the wind perspective 
tunnel trap  
The wind-tunnel perspective trap: In a steady-state 
diagram, or for an observer at a wind tunnel, an 
object or model has zero momentum. It’s still. So 
how can there be a Newtonian momentum 
exchange? And the flow is in a mean steady state, 
even with turbulence and fluctuations, so how can it 
be exchanging momentum and energy with a 
stationary model? 
Actually, at terminal velocities, there is a dual 
Newtonian energy exchange. (Newton’s exchange 
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also applies to energy.) Thrust adds kinetic energy 
to the object, compared to its decrease in kinetic 
energy (slowing) if thrust is removed. Drag, 
whether inertial or from shear frictions, removes 
equal kinetic energy, for constant object velocity, 
adding kinetic energy to wake.  
A later section shows how that takes place and 
resultant flow dynamics.  

The trap in D’Alembert’s and Euler’s diagrams 
The trap: In d’Alembert’s and Euler’s diagrams or 
through a wind tunnel window, an object or model 
appears to have zero momentum. The flow is of 
constant momentum. So how can there be an 
exchange of momentum between object and flow?  

The observer frame of reference where we watch 
how flows move past a stationary object is known 
as the Eulerian perspective, after Euler’s diagrams 
and other works. The trap is that in steady states it 
makes Newtonian momentum exchanges appear 
impossible. That helped defeat Newton’s theory of 
inertial resistance for three centuries. However:   
Our mathematicians had set the thrust they didn’t 
believe necessary at zero to match the inviscid drag 
they didn’t believe existed. Newton’s theory asserts 
that there is always inertial drag between object and 
flow (unless artificially ignored), and thus 
d’Alembert’s diagram, like any wind tunnel or 
airplane in steady flight, would require thrust to 
maintain its steady state.  

Where thrust maintains a steady state, the 
baseline for comparison is, “What happens if 
the thrust is removed?”  
Even in a fictional, frictionless wind tunnel, 
Newton’s theory asserts inertial resistance and 
exchange of momentum between object and flow. 
But again, how, when the object doesn’t change 
momentum, is there an exchange of momentum?  
A first partial answer is that velocity, momentum, 
and energy are relative between two masses, 
between object and flow. The apparent zero 
momentum of a model in a wind tunnel is only in 
relation to the observer, which is irrelevant.  

Changes in observer frame of reference are 
analogous to solving an equation for what we want 

to look at. Newton’s momentum exchange becomes 
evident when we switch to the perspective of his 
example, how a moving object disturbs previously 
still air (Lagrangian perspective). 
Then d’Alembert’s object moves through a 
previously still fluid, passing the observer, and is 
kept at constant velocity by thrust. The baseline, 
when thrust is removed, becomes Newton’s 
momentum exchange example of a projectile 
slowed and wake stirred. The rate of slowing is the 
object’s momentum loss. Thrust adds equal 
momentum to that slowing baseline to maintain 
steady velocity – the first Newtonian momentum 
exchange. Drag between the object and flow 
subtracts equal momentum from the object and adds 
it to wake. That’s the second Newtonian momentum 
exchange. The result is a steady state.  

The bottom lines: Where an object is held at 
constant velocity by thrust, there are two Newtonian 
momentum exchanges: thrust adds momentum to 
the object, and drag subtracts equal momentum 
from the object and adds it to wake.  
This holds for energy exchanges also: In a wind 
tunnel, the force from the mount on the model times 
the distance it travels relative to airflow is work, 
energy. That’s by F x d = work. Energy thus added 
to the object is subtracted from it by drag and added 
to wake.  
So there is a pair of Newtonian momentum or 
energy exchanges operating in steady states. It’s 
addition and equal subtraction.  

Newton’s motion exchange is more obvious as in 
his example, where an object is free to slow.  

Fluid epistemology (how we know stuff)  

Science like old railroad grades  
The history of scientific thought is like the history 
of railroads, or streets. Early theorists lay down 
narrow gauge rails, only sometimes along the best 
route. If not rerouted, later theorists may follow the 
same grade, correct or not. My grandparents lived 
on a street in Walla Walla that reportedly had 
started as an Indian trail. By the time I was around, 
it had been formalized into asphalt. D’Alembert and 
Euler, ignoring Newton, assumed real flows were 
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inviscid and steady. The inertia of d’Alembert’s 
analysis kept its conclusions charging down the 
same path, while his assumptions of flow conditions 
quietly formalized into ‘perfect fluid’ conditions, 
paving over their history. ‘Perfect fluid’ became 
accepted as an unreal but simplifying approximation 
of reality (true), without study of ways in which its 
defeat of Newton’s inertial pressure drag was also 
unreal.  

Fluid epistemology and Gödel's incompleteness 
theorems  
Paraphrased, in 1931, Kurt Gödel asserted that all 
systems are either incomplete or inconsistent and 
that the completeness of a system’s set of axioms 
cannot be determined using only those axioms. For 
d’Alembert’s paradox proof, the axioms are the 
rules of mathematics and axioms of ‘perfect’ flows 
as inviscid, incompressible, irrotational, and steady.  

Restated, mathematical consistency within a model 
can’t indicate the completeness of the model. To 
explain any system one must step outside the 
system. To step outside d’Alembert’s system is to 
question the impact of his assumptions and 
simplifications compared to real-world flows and to 
use qualitative interpretations of the equations of 
fluid dynamics, which explanations historically 
have often also been inconsistent and incomplete. 
(See the conceptualist ‘trap’ at the end of this 
section.) Using conceptual analyses to enlarge the 
boundaries of the ‘fluid dynamics system’ is 
consistent with Gödel’s prescription, but again, 
won’t guarantee consistency or completeness.  

Newton’s elements of resistance summed to a more 
complete conceptual frame of reference, even 
without later-discovered instabilities and turbulence, 
than what has persisted. Newton’s ‘motion’ 
exchange, the unstable nature of inviscid flows, and 
the observed fact of fluid-object drag show the 
internal inconsistency and incompleteness of 
d’Alembert’s fluid dynamics system.  

There are a few approaches to fluid dynamics and 
aerodynamics: engineering, mathematical models 
derived from the equations of fluid dynamics, and 
qualitative conceptual models derived from the 
equations of fluid dynamics. Plus ‘educated guess’ 

empirical trial and error, experiment. Each is 
invaluable. Each has weaknesses.  
Oddly, that most tragic turning point in the history 
of fluid dynamics, the defeat of Isaac Newton’s 
theory of inertial resistance, probably didn’t make 
much difference to the development of hydraulic 
engineering, or later to applied aerodynamics. 
That’s the perplexing coexistence of excellent 
engineering equations and methodologies with 
flawed physics explanations.  
Flow fields, the starting point in the analysis of fluid 
forces (lift and drag), are usually too complex to 
derive purely with the equations of fluid dynamics, 
at least without supercomputers. That, historically, 
is the limitation of the mathematical modeling 
approach. It became survival of the simplest. Within 
times in which conceptual models were necessarily 
weak, equations were subject to a selection bias in 
favor of solvability for engineering purposes, with 
inaccuracies empirically compensated, reality 
adding completeness. Where mathematical models 
are solvable, they are likely simplistic – that is: 
incomplete.  

But just because history’s most complete theory of 
fluid drag was supplanted by a less complete but 
simpler theory wasn’t going to make much 
difference to engineers. They had to do something 
different.  
The province of fluid engineers is to substitute 
simplified but mathematically tractable models of 
flow fields to approximate intractably complex 
actualities and then to adjust predictions with 
empirical calibrations, eventually from wind tunnel 
data. It worked superbly, from 18th-century 
hydraulic engineering to 20th-century aerodynamics, 
and then transitioned into the computational fluid 
dynamics (CFD) that could increasingly simulate 
flow fields and forces. But the unrealistic 
simplifications of fluid engineering methodologies 
drift so far from pure physics that they seldom yield 
good explanations, and sometimes perpetuate 
falsehoods. 
The second engineering province is trial-and-error – 
empiricism, measurement of what works. It built all 
airplanes prior to WWII. Wind tunnels and now 
computational fluid dynamics, CFD, are the main 
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tools. CFD is based on mathematical modeling of 
the equations of fluid dynamics, but at its simplest 
is a virtual wind tunnel into which many thousands 
of shapes or airfoils can be tried. Wind tunnels and 
CFD show what works, but can’t give more than 
hints at why.  
In contrast, flows are readily interpreted at a 
conceptual level, which I use mostly herein. The 
fundamental equations of fluid dynamics, if often 
unsolvable with chalk and blackboard, are all 
simple, physically intuitive sentences formalized 
into symbolic form. Combined with physical 
intuition, they are the main means of understanding 
our fluid world.  
Qualitative analyses can form a more complete 
model of complex fluid flows than the difficulties of 
mathematical modeling often allow. Newton’s 
‘resistance’ insights and the subsequent failures of 
mathematicians to recognize and incorporate are 
example. Conceptualists form the hypotheses and 
explanations that more quantitative theorists, often 
taking all credit, then turn into mathematical models 
or engineering methodologies. Indeed, Newton, 
Euler, Rayleigh, and Prandtl all mathematized 
others’ physical concepts into some of physics’ and 
fluid dynamics’ most significant mathematical and 
engineering equations.*  

But here too is a trap: Conceptual analyses are not 
constrained by the internal consistency of 
mathematical proofs, nor by the empirical 
calibrations of engineering. The history of fluid 
dynamics and aerodynamics is littered with poor 
explanations cohabiting with good engineering 
based on simplified, tractable, but incomplete 
mathematical models. And that started in 1744, with 
the defeat of Newton’s theory of inertial resistance.  

                                                
* Indeed, Mr. Spock calculates that 17,343.221 
mathematicians in North America could 
mathematize this paper into elegant calculus, 
8,137.739 correctly. 

Nine mechanisms of Newtonian non-
viscous drag  

Absolute pressure caveat:  

Caveat: Most drag and lift analyses bypass the 
absolute pressures of the Bernoulli equation, and 
work with small variations in pressure via 
coefficients of pressure or differentials, the calculus 
of rates of change. To maintain realism, we’ll stick 
with absolute pressures under three constraints:  
• 1: In real fluids, absolute pressures are zero or 
greater, and ambient pressures are finite.  
• 2: In an incompressible universe, ambient pressure 
is meaningless. There are only variations in 
pressure, which can be positive or negative.  
• 3: In an incompressible, inviscid, steady flow 
universe, with steady thrust energy input, 
‘immersed bow wave’ and ‘stern wave’ pressures 
and object velocity will accumulate to infinity. But 
in non-perfect fluids, bow and stern wave pressures 
are still finite and limited by thrust on the object.  

Nine mechanisms of Newton’s inertial pressure 
resistance and resulting flow dynamics in real 
and inviscid flows, ‘steady flow’ not enforced:  
For flows allowed to develop instabilities, 
turbulence, or to evolve flow patterns, for specified 
combinations of conditions from inviscid and 
compressible to real, the following mechanisms 
hold and result in Newtonian inertially caused 
pressure drag. The first eight are continuum fluid 
analyses. The ninth, Doppler pressure drag, is 
molecular. First a list, then detail:  
• 1: Instability, turbulence, and evolving flow 
pattern drag.  
• 2: Inviscid flows are always unstable, evolving to 
turbulence and other instabilities.  
• 3: D’Alembert’s fore-aft symmetrical pattern of 
flows around a fore-aft symmetrical object is 
unstable. Without the fictional ‘steady flow’ 
constraint they would evolve toward lower local 
energy flow patterns with slowed and then reversed 
low-pressure wake core flows, with outer flows 
carrying kinetic energy into wake.  
• 4: In all but ‘perfect’ fluids, ‘immersed bow and 
stern wave’ pressures are finite, and limited by 
limited (steady) thrust on an object. This limits 
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pressure gradient strength around objects, leading to 
limited fluid displacement velocities and terminal 
object velocity with drag equal to thrust.  
• 5: In compressible flows, ambient pressures get 
used up necking flows in behind the object, 
lowering pressures aft. When fluid inertia exceeds 
ambient pressures, flow separation or cavitation 
occurs.  
• 6: With flow evolution from unstable conditions 
allowed, during the time of acceleration of 
displacement flows the object moves ahead, 
changing volumes and pressures ahead and behind.  
• 7: Inertial containment of pressures.  
• 8: Euler centrifuging.  
• 9: Doppler pressure drag.  

• Mechanism 1: Instabilities, turbulence, flow 
separations, and evolving flow patterns make 
fore-aft unbalanced inertial forces and pressures.  

All such disturbances absorb kinetic energy that is 
then unavailable to for pressure recovery behind the 
object. Where flows separate from an object they 
maintain velocity until somewhat behind the object, 
their kinetic energy thus unavailable for pressure 
recovery immediately behind the object. Lowered 
pressures aft compared to ahead make drag. 
With such instability drag, thrust is required to 
maintain velocity. Limited thrust limits 
displacement pressure gradients and velocities for 
terminal object velocity and drag equal to thrust. 
Only under ‘perfect fluid conditions’ can there be 
zero drag.  

• Mechanism 2: Inviscid flows are always 
unstable, evolving to turbulence and other 
instabilities.  

• Mechanism 3: Acceleration time lag pressures  

Unlike in a perfect fluid around a fore-aft 
symmetrical object, in any non-perfect fluid, flow 
accelerations don’t happen in a simultaneous fore-
aft symmetrical pattern. Even in an incompressible 
non-steady fluid, while pressure gradients propagate 
instantly, they won’t happen symmetrically in 
pattern or time. Compared to flow accelerations 
around a non-symmetrical object in a perfect fluid, 
accelerations in non-perfect fluids will be even 
more asymmetrical.  

During the time it takes to accelerate flows ahead 
out of the way, our object moves forward, 
decreasing available volume ahead and increasing 
displacement pressures above what d’Alembert’s 
diagram and perfect fluid Bernoulli predict. Aft the 
opposite happens. During the time required to 
partially pull flows into convergence behind the 
object, it has moved ahead, increasing the volume 
converging flows must fill, lowering pressures 
below the restored pressures postulated by 
d’Alembert, Euler, and later followers of Bernoulli, 
and increasing the pressure gradients that make flow 
displacement. The difference in resulting fore-aft 
pressures on the object is Newton’s inertial 
resistance.  

The wind tunnel perspective hides time. It shows 
flows around objects in a mean steady state. But 
what happens to a previously-still fluid as an object 
passes through it is not steady. Fluid gets pushed 
and pulled by pressure gradients that build because 
the resistive force of inertia limits accelerations.  

In an incompressible fluid the speed of pressure 
gradient formation is infinite. But without the 
fictional ‘steady’ constraint, fluid motion won’t 
form in a fore-aft symmetrical pattern, so the above 
unbalanced pressures from changing volumes can 
take place.  

Only in inviscid incompressible fluids with 
enforced ‘steady’ flows will displacement pressure 
gradients “be propagated instantly” in a pattern that 
makes simultaneous fore-aft flow symmetry.  

The Bernoulli equation, in any form, has one more 
limitation: it’s a static equation, a snapshot, devoid 
of time. Given any two factors of pressure, velocity, 
and elevation of flow, it will predict the third. In a 
series of CFD ‘snapshots’ it could even be used to 
track the energy forms of a parcel of air as it passes 
an object, perhaps as it carries less pressure energy 
and more kinetic energy. So with some work we 
could drag timing out of the wrong equation.  
Newton supplied the equation that shows the 
inertially-limited acceleration (velocity change per 
time) of a fluid in a pressure gradient.  

The property of inertial mass, m, is that acceleration 
by a finite force takes time, as quantified by 
Newton’s F = ma = m∆v/sec. Or, solving for time:  
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t = m∆v/F. ‘∆v’ means ‘change in velocity.’ Larger 
velocity changes take more time. Only with infinite 
pressure gradient forces could fluid acceleration be 
instantaneous. Inertia rules. 
For either compressible or incompressible fluids the 
time of fluid acceleration means there are local 
pressures, a raised-pressure immersed bow wave 
and a lowered-pressure stern wave, accelerating 
fluids in a displacement pattern recognized in the 
19th and early twentieth centuries:  

• Mechanism 4: Lowest energy flow patterns. 
Symmetry instability.  

Flow patterns entropically evolve toward lower 
available energies, from simple predictable to less 
predictable patterns. That means they evolve toward 
fore-aft and then side-to-side asymmetry, and 
partially into the chaos of turbulence.  
Flows are guided by a balance between inertial, 
pressure, and shear friction forces. Flows deviate 
from the inertial only when forced. Since the inertial 
force is the resistance of mass to acceleration, the 
inertial force occurs only to the extent that equal 
opposite pressure, shear friction, or gravity forces 
deviate a fluid or object from its inertial path. That 
deviation distance is the ‘d’ in the F x d = work 
definition of energy. So flow patterns do locally 
follow lowest available energy paths.  
Note that flows follow their lowest energy paths but 
can carry great kinetic energy. A cannonball follows 
a path of lowest energy balance between its 
momentum, air resistance, and gravity, but delivers 
a whump. Just so, in the developing pattern of flows 
that separate from the surface of an object, faster 
outer flows follow their lowest energy paths but 
deliver kinetic energy to wake.  
In d’Alembert’s comparatively higher local energy 
pattern, flows would slam together aft raising 
pressures for good pressure recovery and low drag. 
But the fore-aft symmetrical flow pattern sketched 
by d’Alembert is not the lowest local energy path, 
so without the fictional ‘steady’ constraint it will 
entropically devolve to asymmetry.  

The solution is a basic pattern of flows, with 
variations. Inertia would keep flows going straight. 
In real fluids, or even ‘almost real’ but inviscid 

fluids, limited ambient pressures get used up 
necking flows in aft, for lower than ambient 
pressures near aft surfaces. A weakened pressure 
gradient from centrifuged lowest pressures near the 
object’s equator to these moderately lowered 
pressures aft doesn’t slow the flows as much as if 
there were perfect pressure recovery. A pressure 
gradient forms from ambient or raised trailing wave 
pressures well aft to the low pressures at the aft 
surface. That pressure gradient slows, thickens, and 
reverses wake core flows, allowing the high-
velocity surrounding flows to separate from aft 
surfaces without converging, to follow straighter 
lower energy paths, and to zip back around the 
forward-moving wake core. The inertia of outer 
flows acts much like a straw surrounding a suck 
forward. See Figure 6.  

Without the raised (recovered) pressures of 
converging flows aft, the fore-aft pressure 
difference makes drag. Outer, faster flows carry 
kinetic energy into wake. As they collide with 
slower flows further aft, they raise pressures in a 
trailing wave that reinforces the pressure gradient 
up the wake center.  
Even incompressible inviscid fluids act the same. 
While fluids in a fictionally infinite incompressible 
universe act like they are under infinite pressure, 
relative pressures, pressure gradients, still exist. 
Unless under anti-evolution constraints, the fluid’s 
inertial tendency to go straight causes a lowered 
pressure behind the object, for the pattern shown in 
Figure 7.  
Around an object in any flow allowed to evolve, 
initially there may be side-to-side flow symmetry. 
As flows behind an object are slowed and then 
reversed, aft pressures drop. Kinetic and pressure 
energies lower simultaneously, for lowered local 
total energy concentrations in the stern wave. Outer 
flows maintain their kinetic energy until slowed by 
collisions further aft and, by separating from aft 
surfaces, follow paths of less forceful deviation 
from the inertial compared to flows in d’Alembert’s 
diagram. That is, they follow straighter, lower local 
energy paths until they slam into slower flows 
further aft.  

Without added thrust, system energy is constant but 
is raised in the bow wave and lowered in the stern 
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wave for drag that slows the object, lowering its 
kinetic energy. Equal and opposite energy is raised 
in net-forward acceleration of fluid and in a trailing 
wave where Newton’s ‘motion’ exchange dumps 
energy into wake.  

In the initial moments in which flows start moving 
around an object, before developing instabilities add 
complexity, that even inviscid simulations show an 
inviscid drag pattern indicates that computational 
fluid dynamics (CFD) has chased engineering 
quantitative interpretations of the Euler and Navier-
Stokes equations to successful bypass of 
d’Alembert’s paradox of zero drag.  

Except at very low speeds in real flows, or with the 
enforced ‘steady’ constraint, axial symmetry won’t 
last. In real fluids, this pattern is stable at very low 
Reynolds numbers (roughly, low speeds). At very 
low Re, flows remain laminar, with no turbulence, 
so drag is mainly from friction. At higher Re, 
boundary layer velocity gradients normal to the 
surface of the object can be measured and viscous 
friction computed. The remainder is Newton’s 
inertial drag.  

Then the flow pattern evolves further, to even lower 
local energy paths. Patterns vary, but the basic 
sequence holds: At moderate speeds, a pair of 
vortices forms (or for 3D, a torroid) around the aft 
core axis, with inner flows moving forward, outer 
flows back. This side-to-side symmetry is unstable. 
One of the vortices grows larger, is ripped free, and 
then the alternating pattern of Kármán vortices 
forms. At this point, the faster outer flow energy 
goes partly into the Kármán swirls, or at higher Re 
into turbulence.  
And it is here that Newton’s observation of the 
oscillations of a sinking sphere enter. Recall that he 
asserted that these oscillations add drag. Though 
disturbances have some effect on flow velocities 
near the object (and thus on frictions if in a real 
flow analysis), this added drag, as from all flow 
separations, vortices, or turbulence, is inertially 
caused pressure drag.  
 

Figure 7: Initial flows: In this simulation, flow 
has just started around a cylinder, showing a 
displacement pattern Frederick William 
Lanchester diagrammed in 1907: slowed or 
reversed core wake flows balanced by fast outer-
wake flows. (See Figure 8.) The vertical line shows 
flow if there were no object. Here side-to-side 
instability is just starting to form, with one vortex 
larger than the other. At moderate speeds, as flows 
evolve from the simplest pattern, side-to-side 
symmetry is unstable and will give way to 
alternating Kármán vortices.56 Note that to the 
right, where flows thicken they have slowed; we 
are looking at a raised-pressure wave, which adds 
a little to the axial forward pressure gradient.  

Note that at any stage of wake formation, for any 
cross-section of wake, when central flows slow or 
reverse, outer flows must have higher than average 
speed. That’s by Leonardo da Vinci’s continuity 
equation, approximately 1490, which says that for 
an entire incompressible flow, cross-sectional area 
is inversely proportional to velocity.57 But that’s 
average velocity. A corollary is that if one part of 
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the flow is slower another must be faster, even 
where there are vortices or turbulence. See Figures 
7 and 8.  

These initially axially symmetrical patterns of flow 
around objects were at least partially diagrammed in 
the mid-19th and early twentieth centuries. Smoke-
ring toroidal flows were investigated by Herman 
von Helmholtz (1858), his friend William Thomson 
Lord Kelvin (1867),58 and by Frederick William 
Lanchester (1894, 1907). Lanchester, although in a 
somewhat piecemeal fashion, described the basic 
flow pattern of drag as wave (from a wind tunnel 
perspective)59 or as toroid vortex (from the 
perspective of how a passing object disturbs 
fluid).60 The most analogous wave is a Rayleigh 
solid surface wave, as in earthquakes, with 
downward weight forces and retrograde wave 
crests. This pattern corresponds to the inward 
ambient pressure gradient forces on backward 
moving displacement flows around a forward-
moving object. That’s well beyond the scope of this 
paper but should hint that we would most accurately 
label our basic flow pattern as Newton-Lanchester 
inviscid toroidal-wave inertial drag.  

• Mechanism 5: Compressible fluid drag  
In real flows, or even in fairly incompressible water 
in a fictional inviscid fluid some distance from the 
surface, limited ambient pressures get used up 
necking flows in behind an object. Limited 
available pressure energy gets used up overcoming 
the inertia of flows. That means lowered pressures 
behind the object compared to ahead, and evolving 
flow patterns, for another Newtonian inertial 
pressure mechanism of drag.  

Euler had brought a couple missing condition of 
drag analysis to the table – limited ambient pressure 
and compressible air. But his analysis was limited to 
repeating Benjamin Robins’ study of cavitation. He 
didn’t carry it to the partial vacuum (lowered 
pressures) behind an object in compressible flow.  

In his Commentary on Robin’s 1842 New Principles 
of Gunnery, Euler had attempted to resolve the 
paradox by a more formal treatment of: (1) Robins’ 
experimental observation that at and above 
transonic speeds, air resistance on musket balls 
nearly triples; (2) Robins’ conclusions that the jump 

in drag happens as a vacuum forms behind the ball 
(cavitation); and (3) that cavitation depends on 
projectile velocity and the pressure of the fluid.61 
Euler couldn’t extend this cavitation analysis to 
subsonics or to highly incompressible fluids. He 
only paraphrased Robins, writing: “the weight of a 
column of air” determines “the velocity with which 
the air will . . . rush into a place void of matter.62 
This translates to the condition of limited ambient 
pressure, meaningless in infinite incompressible 
fluids, but relevant to Newtonian inertial resistance 
in compressible inviscid or real fluids.  

• Mechanism 6: Finite displacement pressures in 
non-perfect fluids are limited by thrust 

In non-perfect fluids, ‘immersed bow wave’ and 
‘stern wave’ pressures are finite and limited by 
limited thrust on an object. This limits pressure 
gradient strength around objects, leading to limited 
fluid displacement velocities. Under thrust, as 
relative object-flow speed increases, drag from 
friction or instabilities will increase until equal to 
thrust, for a terminal velocity.  

• Mechanism 7: Inertial containment of 
pressures 
Local pressures would not happen if not for what I 
have long thought of as ‘aero-inertial containment,’ 
or for incompressibles, ‘fluid-inertial (leaky!) 
hydraulic containment.’ Inertial containments of 
pressures are never perfect. Salmon swim less 
efficiently close to stream surfaces because the 
limited inertial mass of the water above allows 
energy recovery pressures and thrust pressures to 
escape into surface wave formation.63 Around an 
immersed moving object, bow wave pressures are 
considerably weakened by the pressure gradient 
toward centrifugally lowered pressures to its sides. 
Lowered pressures aft are contained in partial 
vacuum by the time it takes to accelerate inertial 
fluids inwards, during which the object has moved 
forwards.  
Note that this is a purely inertial argument: As an 
object moves into fluid, it is the inertia of the 
surrounding fluid field that is the inertial container, 
and the inertia of more local fluid that slows its 
escape along pressure gradients into displacement 
and instability patterns. Resulting pressures are 
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raised ahead and lowered aft: Newtonian inertially 
caused pressure resistance.  
 

Figure 8: Lanchester displacement patterns: 
Lanchester 1907 fluid displacement diagram 
superimposed on his rendition of Kelvin’s 1868 
vortex flows diagram, here driven by an object 
moving to the left. Vertical lines are undisturbed 
flow. Curved ‘timelines’ show as much volume 
displaced forwards as backward. Picture an object 
pushing and pulling bow and stern wave volumes 
centrally forward, with displacement flow volumes 
moving back to its sides. Note that if the slice 
crosses the object, the object’s cross-sectional area 
x velocity is part of the forward-moving volume, 
balanced by displacement flows. Incidentally, this 
fact is missing from most analyses of asymmetric 
'circulation' around wings. 

• Mechanism 8: Euler centrifuging  

Our Figure 5 diagram from Euler’s Commentary 
can further help establish the pattern of pressures 
around an object in flow. Euler diagrammed flows 
around the front of a bluff body and asserted that 
the only forward region of resistance pressure was, 
essentially, where flows were concave to the front 
of the body. This was his hint at centrifuging of 

pressure gradients. It is well known that Euler’s 
1752 Bernoulli equation was a ‘one-dimensional’ 
(along streamlines) simplification of his equations 
of inviscid fluid dynamics. Similarly, it was 
probably Euler who translated Huygens’ 167364 
written centripetal force relations and Newton’s 
168765 centripetal equations (in modern terms,  
F = mv2/r) into the simplified form of his inviscid 
equation for forces normal to streamlines, the 
equation for centrifuging of pressure gradients 
across curving streamlines:  

dP/dz = -ρv2/r  
This equation reads: the change in pressure normal 
to a curving streamline equals minus the fluid 
density times its velocity squared over the local 
radius of curvature. The minus sign indicates that 
the centrifugal force is the inertial opposite to an 
external centripetal force. Or more simply, curving 
flows centrifuge pressure gradients with lower 
pressures to the inside of the curve or higher 
pressures to the outside.  

In Euler’s flow diagram, centrifuging would 
increase pressures from A to M, and decrease 
pressures from M to D. But centrifugally raised 
pressures ahead are also lowered by the suck of 
fluid along the pressure gradient toward 
centrifugally lowered pressures to the sides. The 
result is a smaller volume of raised pressure bow 
wave ahead than would be expected purely from the 
curvature of flows ahead.  
Given the evolving pattern of flows that separate 
from bluff objects and straighten aft, centrifuging of 
raised pressures is weaker aft than ahead.  

The centrifugal force is just the inertial force in a 
curving pattern, so the centrifuging of fore-aft 
pressure differences is another mechanism of 
Newton’s inertial drag.  

And then the aft flow pattern evolves. See Figure 9. 
At moderate speeds, Kármán vortices may form, 
though at low and high Re wakes are more side-to-
side symmetrical. Wake inertia forms a partial 
vacuum behind the object, like beneath your had as 
you jerk it rapidly up from the bottom of your 
water-filled tub. Behind an object with alternating 
Kármán vortex wake that low pressure moves from 
side to side, probably the main cause of Newton’s 
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sinking sphere’s side-to-side oscillations. Vortices 
alternately form and break free, carrying kinetic 
energy into wake as persisting alternating swirls. 
Recall that, without identifying the flow pattern, 
Newton observed this side-to-side lift on spheres 
sinking in water as “oscillations,” which he 
correctly asserted added resistance.66  

Figure 9:67 Flow separation drag. Separated flows 
maintain their velocity, momentum (mv), and 
kinetic energy as wake inertia. The wake’s inertia 
forms a partial vacuum behind the object, into 
which flows may alternately curl, forming voritces 
held together around their centrifuged low-
pressure centers. Each vortex has net downstream 
momentum that rips it free into a Kármán 
alternating vortex ‘street.’ Most of the aft low 
pressures that ‘pull’ back on the object and pull 
forward on wake are within a few diameters of the 
object. Note that this volume is ‘sealed’ against 
intrusions of higher-pressure fluid. Swirls further 
back are kinetic energy dumped into wake. 

Mechanism 9: Non-viscous Doppler pressure 
drag  
A Doppler pressure analysis answers an old and 
critical question, but only at a molecular level 
(although we’ll get to a conclusion for inviscid 
fluids): How can flows sliding along surfaces of a 
moving object act as collision, for higher pressures 
ahead and lower pressures aft? The starting point is 
that within the boundary layer, flow velocities are 
slower closer to the surface, with zero or very small 
slip at the surface. Very near surfaces, viscous 
fluids flow negligibly. Here we could define a 
‘negligible-slip layer’ that moves mostly with the 
object rather than with flows.  
Molecular collisions with a surface rectify random 
molecular velocities into reflected velocities. On 
forward surfaces, the ‘negligible-slip’ layer's 
forward velocity adds to the reflected velocities of 

molecules rebounding from its surface and to those 
moving randomly within the surface layer, relative 
to undisturbed flows further ahead. They have a 
raised forward energy relative to molecules further 
ahead, where flows are slower or not yet disturbed. 
Aft it’s opposite.  
Historically, applications of Christian Doppler’s 
1842 Doppler effect focused on the changes in 
perceived frequency between an observer and a 
passing, receding, or approaching emitter of sound 
or light. For light, the 'redshift' of receding stars is 
to lower, less energetic frequencies. To an observer, 
the pitch of a train whistle drops as the train passes. 
Somehow a Doppler pressure effect wasn’t applied 
to d’Alembert’s paradox.  

If you listen to the sound of a passing fastball or 
paintball, or a car passing on a highway, you’ll hear 
a drop in frequency, “Sheeooo.” Unlike the train 
whistle, it’s a mix of frequencies, all dropping. 
Much but not all of that noise is from turbulence.  
Hard surfaces act like emitters of white noise. 
Molecules with random velocities of near a hard 
surface bounce from it, making white-noise sound 
waves, a jumble of frequencies. That’s a good part 
of what you hear when you put a seashell or a cup 
to your ear. And it’s what makes pressure on the 
surface of a moving object. That pressure is 
increased ahead and decreased aft by a Doppler 
pressure effect:  

Rebounding molecules don't get far. Ahead, each 
molecule bangs into other molecules, shock waves 
radiating at the speed of sound within the forward-
moving surface layer.  

The speed of sound is relative to its medium, so 
sound within the thin ‘negligible slip’ surface layer 
moves at the speed of sound plus the speed of the 
object. That’s like when your 787 suddenly dives 
past the speed of sound, your scream doesn’t slam 
into the back wall. The speed boost from the 
moving surface layer disappears as white-noise 
waves verge into slower or less disturbed flows 
ahead, or into retrograde displacement flows more 
to the sides. Wave speed is reduced, compressing 
wavelengths, raising average frequencies of 
collision. This increases pressures ahead of the 
object, in turn increasing frequency of molecular 

mv

mv
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impacts on the object’s forward surface, for 
increased pressures normal to the surface. Aft, 
pressures are reduced. The component of resulting 
surface pressure forces opposite to travel is 
Newton’s non-viscous inertial drag.  

Note that this Doppler effect is a non-viscous, 
inertial component of drag in real flows, even 
though it depends on the viscous shear frictions that 
make the near-zero-slip layer at the surface of an 
object. The negligible slip layer is the setting. The 
molecular rebounds do create viscous mixing of 
momentums for shear frictions parallel to 
streamlines (or for non-steady flows, parallel to 
streaklines.) But the pressures radiating across 
streamlines or streaklines are non-viscous, unequal 
fore-and-aft, and sum to Newtonian non-viscous 
inertial drag.  

Beyond the scope of this article but adding validity, 
the concept of ‘added mass’ describes mass carried 
along with an object by viscous and unbalanced 
pressure forces.68 The Doppler pressure effect could 
be described as the intensification (ahead) or de-
intensification (aft) of molecular white-noise 
pressure waves across the velocity gradients of 
‘added mass.’  

A fictional inviscid fluid doesn't have the random 
molecular motions that create viscosity, so flow 
motions are only along surfaces. But just as the 
redshift of light from receding stars is independent 
of frequency, as random molecular velocities and 
‘bounce frequency’ approach fictional inviscid zero, 
Doppler pressure drag won’t disappear. Rather, as 
flows become more like fictional continuum flows 
that slide only along surfaces, a Doppler mechanism 
devolves into the previously described continuum 
mechanisms.  
Newton’s ghost says, “Q.E.D.”  

Summary  
Newton’s 1687 theory of inertial pressure 
resistance, historically dismissed, is a non-viscous, 
separable component of drag in real flows and 
operates in inviscid flows. Its mechanism is the drag 
from instabilities, which weren’t investigated until 
1842, so d’Alembert’s 1744 proof of zero drag 
under seemingly similar frictionless flow conditions 
appeared to disprove Newton’s theory.  Steady and 

inviscid flow started as assumptions and evolved 
into modern simplifying conditions, which along 
with incompressibility define ‘perfect fluid,’ the 
only conditions under which d’Alembert’s and the 
Bernoulli equation’s predictions of zero drag hold. 
Under perfect flows, the instabilities which are the 
mechanisms of Newton’s inertial pressure drag 
can’t exist, so Newton’s theory also predicts 
D’Alembert’s zero drag. The incompatibility of the 
two theories was only apparent. The disproof was 
false. Without the fictional constraint of steady 
flows, all inviscid fluids develop instabilities and 
drag. Ditto for all but the slowest of real flows. 
Instabilities absorb the kinetic energy of flows, 
which then doesn’t get converted into raised 
pressures behind an object, the pressure imbalance 
making drag. Newton’s theory of non-viscous 
inertially caused pressure drag is correct under all 
conditions.  
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